Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
bioRxiv ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38659959

ABSTRACT

Nipah virus recurrently spills over to humans, causing fatal infections. The viral receptor-binding protein (RBP or G) attaches to host receptors and is a major target of neutralizing antibodies. Here we use deep mutational scanning to measure how all amino-acid mutations to the RBP affect cell entry, receptor binding, and escape from neutralizing antibodies. We identify functionally constrained regions of the RBP, including sites involved in oligomerization, along with mutations that differentially modulate RBP binding to its two ephrin receptors. We map escape mutations for six anti-RBP antibodies, and find that few antigenic mutations are present in natural Nipah strains. Our findings offer insights into the potential for functional and antigenic evolution of the RBP that can inform the development of antibody therapies and vaccines.

2.
bioRxiv ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38558973

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic betacoronavirus that causes severe and often lethal respiratory illness in humans. The MERS-CoV spike (S) protein is the viral fusogen and the target of neutralizing antibodies, and has therefore been the focus of vaccine design efforts. Currently there are no licensed vaccines against MERS-CoV and only a few candidates have advanced to Phase I clinical trials. Here we developed MERS-CoV vaccines utilizing a computationally designed protein nanoparticle platform that has generated safe and immunogenic vaccines against various enveloped viruses, including a licensed vaccine for SARS-CoV-2. Two-component protein nanoparticles displaying MERS-CoV S-derived antigens induced robust neutralizing antibody responses and protected mice against challenge with mouse-adapted MERS-CoV. Electron microscopy polyclonal epitope mapping and serum competition assays revealed the specificities of the dominant antibody responses elicited by immunogens displaying the prefusion-stabilized S-2P trimer, receptor binding domain (RBD), or N-terminal domain (NTD). An RBD nanoparticle vaccine elicited antibodies targeting multiple non-overlapping epitopes in the RBD, whereas anti-NTD antibodies elicited by the S-2P- and NTD-based immunogens converged on a single antigenic site. Our findings demonstrate the potential of two-component nanoparticle vaccine candidates for MERS-CoV and suggest that this platform technology could be broadly applicable to betacoronavirus vaccine development.

3.
Sci Immunol ; 7(78): eadf1421, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36356052

ABSTRACT

Numerous safe and effective coronavirus disease 2019 vaccines have been developed worldwide that use various delivery technologies and engineering strategies. We show here that vaccines containing prefusion-stabilizing S mutations elicit antibody responses in humans with enhanced recognition of S and the S1 subunit relative to postfusion S as compared with vaccines lacking these mutations or natural infection. Prefusion S and S1 antibody binding titers positively and equivalently correlated with neutralizing activity, and depletion of S1-directed antibodies completely abrogated plasma neutralizing activity. We show that neutralizing activity is almost entirely directed to the S1 subunit and that variant cross-neutralization is mediated solely by receptor binding domain-specific antibodies. Our data provide a quantitative framework for guiding future S engineering efforts to develop vaccines with higher resilience to the emergence of variants than current technologies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies, Viral , COVID-19/prevention & control , Vaccination , Antibodies, Neutralizing , COVID-19 Vaccines
4.
Science ; 377(6608): 890-894, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35857529

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant of concern comprises several sublineages, with BA.2 and BA.2.12.1 having replaced the previously dominant BA.1 and with BA.4 and BA.5 increasing in prevalence worldwide. We show that the large number of Omicron sublineage spike mutations leads to enhanced angiotensin-converting enzyme 2 (ACE2) binding, reduced fusogenicity, and severe dampening of plasma neutralizing activity elicited by infection or seven clinical vaccines relative to the ancestral virus. Administration of a homologous or heterologous booster based on the Wuhan-Hu-1 spike sequence markedly increased neutralizing antibody titers and breadth against BA.1, BA.2, BA.2.12.1, BA.4, and BA.5 across all vaccines evaluated. Our data suggest that although Omicron sublineages evade polyclonal neutralizing antibody responses elicited by primary vaccine series, vaccine boosters may provide sufficient protection against Omicron-induced severe disease.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/blood , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunization, Secondary , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...