Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Radiat Oncol ; 19(1): 14, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38267999

ABSTRACT

BACKGROUND: Monte Carlo simulation of radiation transport for medical linear accelerators (linacs) requires accurate knowledge of the geometrical description of the linac head. Since the geometry of Varian TrueBeam machines has not been disclosed, the manufacturer distributes phase-space files of the linac patient-independent part to allow researchers to compute absorbed dose distributions using the Monte Carlo method. This approach limits the possibility of achieving an arbitrarily small statistical uncertainty. This work investigates the use of the geometry of the Varian Clinac 2100, which is included in the Monte Carlo system PRIMO, as a surrogate. METHODS: Energy, radial and angular distributions extracted from the TrueBeam phase space files published by the manufacturer and from phase spaces tallied with PRIMO for the Clinac 2100 were compared for the 6, 8, 10 and 15 MV flattened-filtered beams. Dose distributions in water computed for the two sets of PSFs were compared with the Varian Representative Beam Data (RBD) for square fields with sides ranging from 3 to 30 cm. Output factors were calculated for square fields with sides ranging from 2 to 40 cm. RESULTS: Excellent agreement with the RBD was obtained for the simulations that employed the phase spaces distributed by Varian as well as for those that used the surrogate geometry, reaching in both cases Gamma ([Formula: see text], 2 mm) pass rates larger than [Formula: see text], except for the 15 MV surrogate. This result supports previous investigations that suggest a change in the material composition of the TrueBeam 15 MV flattening filter. In order to get the said agreement, PRIMO simulations were run using enlarged transport parameters to compensate the discrepancies between the actual and surrogate geometries. CONCLUSIONS: This work sustains the claim that the simulation of the 6, 8 and 10 MV flattening-filtered beams of the TrueBeam linac can be performed using the Clinac 2100 model of PRIMO without significant loss of accuracy.


Subject(s)
Transcription Factors , Humans , Monte Carlo Method , Computer Simulation , Gamma Rays
3.
Front Oncol ; 13: 1222800, 2023.
Article in English | MEDLINE | ID: mdl-37795436

ABSTRACT

Background: In radiotherapy, especially when treating children, minimising exposure of healthy tissue can prevent the development of adverse outcomes, including second cancers. In this study we propose a validated Monte Carlo framework to evaluate the complete patient exposure during paediatric brain cancer treatment. Materials and methods: Organ doses were calculated for treatment of a diffuse midline glioma (50.4 Gy with 1.8 Gy per fraction) on a 5-year-old anthropomorphic phantom with 3D-conformal radiotherapy, intensity modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT) and intensity modulated pencil beam scanning (PBS) proton therapy. Doses from computed tomography (CT) for planning and on-board imaging for positioning (kV-cone beam CT and X-ray imaging) accounted for the estimate of the exposure of the patient including imaging therapeutic dose. For dose calculations we used validated Monte Carlo-based tools (PRIMO, TOPAS, PENELOPE), while lifetime attributable risk (LAR) was estimated from dose-response relationships for cancer induction, proposed by Schneider et al. Results: Out-of-field organ dose equivalent data of proton therapy are lower, with doses between 0.6 mSv (testes) and 120 mSv (thyroid), when compared to photon therapy revealing the highest out-of-field doses for IMRT ranging between 43 mSv (testes) and 575 mSv (thyroid). Dose delivered by CT ranged between 0.01 mSv (testes) and 72 mSv (scapula) while a single imaging positioning ranged between 2 µSv (testes) and 1.3 mSv (thyroid) for CBCT and 0.03 µSv (testes) and 48 µSv (scapula) for X-ray. Adding imaging dose from CT and daily CBCT to the therapeutic demonstrated an important contribution of imaging to the overall radiation burden in the course of treatment, which is subsequently used to predict the LAR, for selected organs. Conclusion: The complete patient exposure during paediatric brain cancer treatment was estimated by combining the results from different Monte Carlo-based dosimetry tools, showing that proton therapy allows significant reduction of the out-of-field doses and secondary cancer risk in selected organs.

4.
Radiother Oncol ; 181: 109464, 2023 04.
Article in English | MEDLINE | ID: mdl-36640946

ABSTRACT

BACKGROUND AND PURPOSE: To establish an international quality standard for contouring and planning for high-risk neuroblastoma within the prospective High-Risk Neuroblastoma Study 2 of SIOP-Europe-Neuroblastoma (SIOPEN HR-NBL2), which includes a randomized question on dose escalation for residual disease. MATERIALS AND METHODS: Data on four patients with high-risk neuroblastoma were selected and distributed to the radiotherapy committee of the HR-NBL2 study for independent contouring and planning. Differences in contouring were analyzed using apparent and kappa-corrected agreement. Plans were analyzed regarding the dose-volume histogram metrics. Results were discussed among experts and agreement was obtained. RESULTS: Substantial agreement was found for contouring of the heart (0.64), liver (0.70), left lung (0.74), and right lung (0.74). For contouring of the gastrointestinal tract (0.54), left kidney (0.60), and right kidney (0.59) moderate agreement was obtained. For target volume delineation, agreement for preoperative tumour extent was moderate (0.42), for CTV fair (0.35) and only low (0.06) for residual tumour, respectively. The dose planning strategies appeared to be relatively homogeneous among all experts. CONCLUSION: Considerable variability was found for the delineation of target volumes, particularly the boost volume, whereas the contouring of the organs at risk and the planning strategy were reasonably consistent. In order to obtain reliable results from the randomized HR-NBL2 trial, standardization of target volume delineation based on adequate imaging is crucial.


Subject(s)
Neuroblastoma , Radiation Oncology , Humans , Radiotherapy Planning, Computer-Assisted/methods , Prospective Studies , Lung , Neuroblastoma/diagnostic imaging , Neuroblastoma/radiotherapy , Observer Variation
5.
Front Oncol ; 12: 882506, 2022.
Article in English | MEDLINE | ID: mdl-35875147

ABSTRACT

Background: The out-of-the-field absorbed dose affects the probability of primary second radiation-induced cancers. This is particularly relevant in the case of pediatric treatments. There are currently no methods employed in the clinical routine for the computation of dose distributions from stray radiation in radiotherapy. To overcome this limitation in the framework of conventional teletherapy with photon beams, two computational tools have been developed-one based on an analytical approach and another depending on a fast Monte Carlo algorithm. The purpose of this work is to evaluate the accuracy of these approaches by comparison with experimental data obtained from anthropomorphic phantom irradiations. Materials and Methods: An anthropomorphic phantom representing a 5-year-old child (ATOM, CIRS) was irradiated considering a brain tumor using a Varian TrueBeam linac. Two treatments for the same planned target volume (PTV) were considered, namely, intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). In all cases, the irradiation was conducted with a 6-MV energy beam using the flattening filter for a prescribed dose of 3.6 Gy to the PTV. The phantom had natLiF : Mg, Cu, P (MCP-N) thermoluminescent dosimeters (TLDs) in its 180 holes. The uncertainty of the experimental data was around 20%, which was mostly attributed to the MCP-N energy dependence. To calculate the out-of-field dose, an analytical algorithm was implemented to be run from a Varian Eclipse TPS. This algorithm considers that all anatomical structures are filled with water, with the exception of the lungs which are made of air. The fast Monte Carlo code dose planning method was also used for computing the out-of-field dose. It was executed from the dose verification system PRIMO using a phase-space file containing 3x109 histories, reaching an average standard statistical uncertainty of less than 0.2% (coverage factor k = 1 ) on all voxels scoring more than 50% of the maximum dose. The standard statistical uncertainty of out-of-field voxels in the Monte Carlo simulation did not exceed 5%. For the Monte Carlo simulation the actual chemical composition of the materials used in ATOM, as provided by the manufacturer, was employed. Results: In the out-of-the-field region, the absorbed dose was on average four orders of magnitude lower than the dose at the PTV. For the two modalities employed, the discrepancy between the central values of the TLDs located in the out-of-the-field region and the corresponding positions in the analytic model were in general less than 40%. The discrepancy in the lung doses was more pronounced for IMRT. The same comparison between the experimental and the Monte Carlo data yielded differences which are, in general, smaller than 20%. It was observed that the VMAT irradiation produces the smallest out-of-the-field dose when compared to IMRT. Conclusions: The proposed computational methods for the routine calculation of the out-of-the-field dose produce results that are similar, in most cases, with the experimental data. It has been experimentally found that the VMAT irradiation produces the smallest out-of-the-field dose when compared to IMRT for a given PTV.

6.
Front Oncol ; 12: 882489, 2022.
Article in English | MEDLINE | ID: mdl-35756661

ABSTRACT

Proton therapy enables to deliver highly conformed dose distributions owing to the characteristic Bragg peak and the finite range of protons. However, during proton therapy, secondary neutrons are created, which can travel long distances and deposit dose in out-of-field volumes. This out-of-field absorbed dose needs to be considered for radiation-induced secondary cancers, which are particularly relevant in the case of pediatric treatments. Unfortunately, no method exists in clinics for the computation of the out-of-field dose distributions in proton therapy. To help overcome this limitation, a computational tool has been developed based on the Monte Carlo code TOPAS. The purpose of this work is to evaluate the accuracy of this tool in comparison to experimental data obtained from an anthropomorphic phantom irradiation. An anthropomorphic phantom of a 5-year-old child (ATOM, CIRS) was irradiated for a brain tumor treatment in an IBA Proteus Plus facility using a pencil beam dedicated nozzle. The treatment consisted of three pencil beam scanning fields employing a lucite range shifter. Proton energies ranged from 100 to 165 MeV. A median dose of 50.4 Gy(RBE) with 1.8 Gy(RBE) per fraction was prescribed to the initial planning target volume (PTV), which was located in the cerebellum. Thermoluminescent detectors (TLDs), namely, Li-7-enriched LiF : Mg, Ti (MTS-7) type, were used to detect gamma radiation, which is produced by nuclear reactions, and secondary as well as recoil protons created out-of-field by secondary neutrons. Li-6-enriched LiF : Mg,Cu,P (MCP-6) was combined with Li-7-enriched MCP-7 to measure thermal neutrons. TLDs were calibrated in Co-60 and reported on absorbed dose in water per target dose (µGy/Gy) as well as thermal neutron dose equivalent per target dose (µSv/Gy). Additionally, bubble detectors for personal neutron dosimetry (BD-PND) were used for measuring neutrons (>50 keV), which were calibrated in a Cf-252 neutron beam to report on neutron dose equivalent dose data. The Monte Carlo code TOPAS (version 3.6) was run using a phase-space file containing 1010 histories reaching an average standard statistical uncertainty of less than 0.2% (coverage factor k = 1) on all voxels scoring more than 50% of the maximum dose. The primary beam was modeled following a Fermi-Eyges description of the spot envelope fitted to measurements. For the Monte Carlo simulation, the chemical composition of the tissues represented in ATOM was employed. The dose was tallied as dose-to-water, and data were normalized to the target dose (physical dose) to report on absorbed doses per target dose (mSv/Gy) or neutron dose equivalent per target dose (µSv/Gy), while also an estimate of the total organ dose was provided for a target dose of 50.4 Gy(RBE). Out-of-field doses showed absorbed doses that were 5 to 6 orders of magnitude lower than the target dose. The discrepancy between TLD data and the corresponding scored values in the Monte Carlo calculations involving proton and gamma contributions was on average 18%. The comparison between the neutron equivalent doses between the Monte Carlo simulation and the measured neutron doses was on average 8%. Organ dose calculations revealed the highest dose for the thyroid, which was 120 mSv, while other organ doses ranged from 18 mSv in the lungs to 0.6 mSv in the testes. The proposed computational method for routine calculation of the out-of-the-field dose in proton therapy produces results that are compatible with the experimental data and allow to calculate out-of-field organ doses during proton therapy.

7.
Med Phys ; 48(6): 3186-3199, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33772808

ABSTRACT

BACKGROUND AND PURPOSE: Monte Carlo simulations as well as analytical computations of proton transport in material media require accurate values of multiple Coulomb scattering (MCS) angles. High-quality experimental data on MCS angles in the energy range for proton therapy are, however, sparse. In this work, MCS modeling in proton transport was evaluated employing an experimental method to measure these angles on a medical proton beamline in clinically relevant materials. Results are compared to Monte Carlo simulations and analytical models. MATERIALS AND METHODS: Aluminum, brass, and lucite (PMMA) scatterers of clinically relevant thicknesses were irradiated with protons at 100, 160, and 220 MeV. Resulting spatial distributions of individual pencil beams were measured with a scintillating screen. The MCS angles were determined by deconvolution and a virtual point source approach. Results were compared to those obtained with the Monte Carlo codes PENH, TOPAS, and RayStation Monte Carlo, as well as the analytical models RayStation Pencil Beam Algorithm and the Molière/Fano/Hanson variant of the Molière theory. RESULTS: Experimental data obtained with the presented methodology agree with previously published results within 6%, with an average deviation of 3%. The combined average uncertainty of the experimental data yielded 1.8%, while the combined maximum uncertainty was below 4%. The obtained Monte Carlo results for PENH, TOPAS, and RayStation deviate on average for all considered energies, materials and thicknesses, by 2.5%, 3.4%, and 2.8% from the experimental data, respectively. For the analytical models, the average deviations amount to 4.5% and 2.9% for the RayStation Pencil Beam Algorithm and the Molière/Fano/Hanson model, respectively. CONCLUSION: The experimental method developed for the present work allowed to measure MCS angles in clinical proton facilities with good accuracy. The presented method permits to extend the database on experimental MCS angles which is rather limited. This work further provides benchmark data for lucite in thicknesses relevant for clinical applications. The data may serve to validate dose engines of treatment planning systems and secondary dose check software. The Monte Carlo and analytical algorithms studied are capable of reproducing MCS data within the required accuracy for clinical applications.


Subject(s)
Proton Therapy , Protons , Algorithms , Monte Carlo Method , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
8.
Med Phys ; 48(6): 3160-3171, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33715167

ABSTRACT

PURPOSE: Conical collimators, or cones, are tertiary collimators that attach to a radiotherapy linac and are suited for the stereotactic radiosurgery treatment of small brain lesions. The small diameter of the most used cones makes difficult the acquisition of the dosimetry data needed for the commissioning of treatment planning systems. Although many publications report dosimetric data of conical collimators for stereotactic radiosurgery, most of the works use different setups, which complicates comparisons. In other cases, the cone output factors reported do not take into account the effect of the small cone diameter on the detector response. Finally, few data exist on the dosimetry of cones with flattening-filter-free (FFF) beams from modern linac models. This work aims at obtaining a dosimetric characterization of the conical collimators manufactured by Brainlab AG (Munich, Germany) in a 6 MV FFF beam from a TrueBeam STx linac (Varian Medical Systems). METHODS: Percentage depth dose curves, lateral dose profiles and cone output factors were obtained using Monte Carlo simulations for the cones with diameters of 4, 5, 6, 7.5, 8, 10, 12.5, 15, 17.5, 20, 25, and 30 mm. The simulation of the linac head was carried out with the PRIMO Monte Carlo software, and the simulations of the cones and the water phantom were run with the general-purpose Monte Carlo code PENELOPE. The Monte Carlo model was validated by comparing the simulation results with measurements performed for the cones of 4, 5, and 7.5 mm of diameter using a stereotactic field diode, a microDiamond detector and EBT3 radiochromic film. In addition, for those cones, simulations and measurements were done for comparison purposes, by reproducing the experimental setups from the available publications. RESULTS: The experimental data acquired for the cones of 4, 5, and 7.5 mm validated the developed Monte Carlo model. The simulations accurately reproduced the experimental depths of maximum dose and the dose ratio at 20- and 10-cm depth (PDD20/10 ). A good agreement was obtained between simulated and experimental lateral dose profiles: The differences in the full-width at half-maximum were smaller than 0.2 mm, and the differences in the penumbra 80%-20% were smaller than 0.25 mm. The difference between the simulated and the average of the experimental output factors for the cones of 4, 5, and 7.5 mm of diameter was 0.0%, 0.0%, and 3.0%, respectively, well within the statistical uncertainty of the simulations (4.4% with coverage factor k = 2). It was also found that the simulated cone output factors agreed within 2% with the average of output factors reported in the literature for a variety of setup conditions, detectors, beam qualities, and cone manufacturers. CONCLUSION: A Monte Carlo model of cones for stereotactic radiosurgery has been developed and validated. The cone dosimetry dataset obtained in this work, consisting of percentage depth doses, lateral dose profiles and output factors, is useful to benchmark data acquired for the commissioning of cone-based radiosurgery treatment planning systems.


Subject(s)
Radiosurgery , Algorithms , Germany , Monte Carlo Method , Particle Accelerators , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
9.
Med Phys ; 48(1): 456-476, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33217026

ABSTRACT

BACKGROUND AND PURPOSE: PENH is a recently coded module for simulation of proton transport in conjunction with the Monte Carlo code PENELOPE. PENELOPE applies class II simulation to all type of interactions, in particular, to elastic collisions. PENH uses calculated differential cross sections for proton elastic collisions that include electron screening effects as well as nuclear structure effects. Proton-induced nuclear reactions are simulated from information in the ENDF-6 database or from alternative nuclear databases in ENDF format. The purpose of this work is to benchmark this module by simulating absorbed dose distributions from a single finite spot size proton pencil beam in water. MATERIALS AND METHODS: Monte Carlo simulations with PENH are compared with simulation results from TOPAS Monte Carlo (v3.1p2) and RayStation Monte Carlo (v6). Different beam models are examined in terms of mean energy and energy spread to match the measured profiles. The phase-space file is derived from experimental measurements. Simulated absorbed dose distributions are compared to experimental data obtained with the ionization chamber array MatriXX 2D detector (IBA Dosimetry) in a water tank. The experiments were conducted with a clinical IBA pencil beam scanning dedicated nozzle. In all simulations a Fermi-Eyges phase-space representation of a single finite spot size proton pencil beam is used. RESULTS: In general, there is a good agreement between simulated results and experimental data up to a distance of 3 cm from the central axis. In the core region (region where the dose is more than 10% of the maximum dose) PENH shows, overall, the smallest deviations from experimental data, with the largest radial rms (root mean square) smaller than 0.2. The results achieved by TOPAS and RayStation in that region are very close to those of PENH. For the halo region, that is the area of the dose distribution outside the core region reaching down to 0.01% of the maximum intensity, the largest rms achieved by TOPAS is always smaller than 0.5, yielding better results than the rest of the codes. CONCLUSION: The physics modeling of the PENELOPE/PENH code yields results consistent with measurements in the dose range relevant for proton therapy. The discrepancies between PENH appearing at distances larger than 3 cm from the central-beam axis are accountable to the lack of neutron simulation in this code. In contradistinction, TOPAS has a better agreement with experimental data at large distances from the central-beam axis because of the simulation of neutrons.


Subject(s)
Proton Therapy , Protons , Benchmarking , Monte Carlo Method , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
10.
Ocul Oncol Pathol ; 6(5): 353-359, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33123529

ABSTRACT

BACKGROUND/AIMS: The aim of this work is to compare Monte Carlo simulated absorbed dose distributions obtained from 106Ru eye plaques, whose heterogeneous emitter distribution is known, with the common homogeneous approximation. The effect of these heterogeneities on segmented structures at risk is analyzed using an anthropomorphic phantom. METHODS: The generic CCA and CCB, with a homogeneous emitter map, and the specific CCA1364 and CCB1256 106Ru eye plaques are modeled with the Monte Carlo code PENELOPE. To compare the effect of the heterogeneities in the segmented volumes, cumulative dose-volume histograms are calculated for different rotations of the aforementioned plaques. RESULTS: For the cornea, the CCA with the equatorial placement yields the lowest absorbed dose rate while for the CCA1364 in the same placement the absorbed dose rate is 33% higher. The CCB1256 with the hot spot oriented towards the cornea yields the maximum dose rate per unit of activity while it is 44% lower for the CCB. CONCLUSIONS: Dose calculations based on a homogeneous distribution of the emitter substance yield the lowest absorbed dose in the analyzed structures for all plaque placements. Treatment planning based on such calculations may result in an overdose of the structures at risk.

11.
Ocul Oncol Pathol ; 5(4): 276-283, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31367591

ABSTRACT

BACKGROUND/AIMS: Ruthenium plaques are used for the treatment of ocular tumors. The aim of this work is the comparison between simulated absorbed dose distributions tallied in an anthropomorphic phantom, obtained from ideal homogeneous plaques, and real eye plaques in which the actual heterogeneous distribution of 106Ru was measured. The placement of the plaques with respect to the tumor location was taken into consideration to optimize the effectiveness of the treatment. METHODS: The generic CCA and CCB, and the specific CCA1364 and CCB1256 106Ru eye plaques were modeled with the Monte Carlo code PENELOPE. To compare the suitability of each treatment for an anterior, equatorial and posterior tumor location, cumulative dose-volume histograms for the tumors and structures at risk were calculated. RESULTS: Eccentric placements of the plaques, taking into account the inhomogeneities of the emitter map, can substantially reduce the dose delivered to structures at risk while maintaining the prescribed dose at the tumor apex. CONCLUSIONS: The emitter map distribution of the plaque and the computerized tomography of the patient used in a Monte Carlo simulation allow an accurate determination of the plaque position with respect to the tumor with the potential to reduce the dose to sensitive structures.

12.
Radiat Oncol ; 14(1): 67, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31014356

ABSTRACT

BACKGROUND: The PRIMO system is a computer software that allows the Monte Carlo simulation of linear accelerators and the estimation of the subsequent absorbed dose distributions in phantoms and computed tomographies. The aim of this work is to validate the methods incorporated in PRIMO to evaluate the deviations introduced in the dose distributions by errors in the positioning of the leaves of the multileaf collimator recorded in the dynalog files during patient treatment. METHODS: The reconstruction of treatment plans from Varian's dynalog files was implemented in the PRIMO system. Dose distributions were estimated for volumetric-modulated arc therapy clinical cases of prostate and head&neck using the PRIMO fast Monte Carlo engine DPM. Accuracy of the implemented reconstruction methods was evaluated by comparing dose distributions obtained from the simulations of the plans imported from the treatment planning system with those obtained from the simulations of the plans reconstructed from the expected leaves positions recorded in the dynalog files. The impact on the dose of errors in the positions of the leaves was evaluated by comparing dose distributions estimated for plans reconstructed from expected leaves positions with dose distributions estimated from actual leaves positions. Gamma pass rate (GPR), a hereby introduced quantity named percentage of agreement (PA) and the percentage of voxels with a given systematic difference (α/Δ) were the quantities used for the comparisons. Errors were introduced in leaves positions in order to study the sensitivity of these quantities. RESULTS: A good agreement of the dose distributions obtained from the plan imported from the TPS and from the plan reconstructed from expected leaves positions was obtained. Not a significantly better agreement was obtained for an imported plan with an increased number of control points such as to approximately match the number of records in the dynalogs. When introduced errors were predominantly in one direction, the methods employed in this work were sensitive to dynalogs with root-mean-square errors (RMS) ≥0.2 mm. Nevertheless, when errors were in both directions, only RMS >1.2 mm produced detectable deviations in the dose. The PA and the α/Δ showed more sensitive to errors in the leaves positions than the GPR. CONCLUSIONS: Methods to verify the accuracy of the radiotherapy treatment from the information recorded in the Varian's dynalog files were implemented and verified in this work for the PRIMO system. Tolerance limits could be established based on the values of PA and α/Δ. GPR 3,3 is not recommended as a solely evaluator of deviations introduced in the dose by errors captured in the dynalog files.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Monte Carlo Method , Particle Accelerators/instrumentation , Phantoms, Imaging , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Software , Humans , Male , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods
13.
Radiat Oncol ; 14(1): 6, 2019 Jan 11.
Article in English | MEDLINE | ID: mdl-30634994

ABSTRACT

BACKGROUND: The availability of photon and electron spectra in digital form from current accelerators and Monte Carlo (MC) systems is scarce, and one of the packages widely used refers to linacs with a reduced clinical use nowadays. Such spectra are mainly intended for the MC calculation of detector-related quantities in conventional broad beams, where the use of detailed phase-space files (PSFs) is less critical than for MC-based treatment planning applications, but unlike PSFs, spectra can easily be transferred to other computer systems and users. METHODS: A set of spectra for a range of Varian linacs has been calculated using the PENELOPE/PRIMO MC system. They have been extracted from PSFs tallied for field sizes of 10 cm × 10 cm and 15 cm × 15 cm for photon and electron beams, respectively. The influence of the spectral bin width and of the beam central axis region used to extract the spectra have been analyzed. RESULTS: Spectra have been compared to those by other authors showing good agreement with those obtained using the, now superseded, EGS4/BEAM MC code, but significant differences with the most widely used photon data set. Other spectra, particularly for electron beams, have not been published previously for the machines simulated in this work. The influence of the bin width on the spectrum mean energy for 6 and 10 MV beams has been found to be negligible. The size of the region used to extract the spectra yields differences of up to 40% for the mean energies in 10 MV beams, but the maximum difference for TPR 20,10 values derived from depth-dose distributions does not exceed 2% relative to those obtained using the PSFs. This corresponds to kQ differences below 0.2% for a typical Farmer-type chamber, considered to be negligible for reference dosimetry. Different configurations for using electron spectra have been compared for 6 MeV beams, concluding that the geometry used for tallying the PSFs used to extract the spectra must be accounted for in subsequent calculations using the spectra as a source. CONCLUSIONS: An up-to-date set of consistent spectra for Varian accelerators suitable for the calculation of detector-related quantities in conventional broad beams has been developed and made available in digital form.


Subject(s)
Electrons , Neoplasms/radiotherapy , Particle Accelerators/instrumentation , Phantoms, Imaging , Photons , Radiotherapy Planning, Computer-Assisted/methods , Humans , Monte Carlo Method , Patient Care Planning , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods
14.
Radiat Oncol ; 13(1): 256, 2018 Dec 27.
Article in English | MEDLINE | ID: mdl-30591056

ABSTRACT

BACKGROUND: PRIMO is a dose verification system based on the general-purpose Monte Carlo radiation transport code PENELOPE, which implements an accurate physics model of the interaction cross sections and the radiation transport process but with low computational efficiency as compared with fast Monte Carlo codes. One of these fast Monte Carlo codes is the Dose Planning Method (DPM). The purpose of this work is to describe the adaptation of DPM as an alternative PRIMO computation engine, to validate its performance against PENELOPE and to validate it for some specific cases. METHODS: DPM was parallelized and modified to perform radiation transport in quadric geometries, which are used to describe linacs, thus allowing the simulation of dynamic treatments. To benchmark the new code versus PENELOPE, both in terms of accuracy of results and simulation time, several tests were performed, namely, irradiation of a multi-layer phantom, irradiation of a water phantom using a collimating pattern defined by the multileaf collimator (MLC), and four clinical cases. The gamma index, with passing criteria of 1 mm/1%, was used to compare the absorbed dose distributions. Clinical cases were compared using a 3-D gamma analysis. RESULTS: The percentage of voxels passing the gamma criteria always exceeded 99% for the phantom cases, with the exception of the transport through air, for which dose differences between DPM and PENELOPE were as large as 24%. The corresponding percentage for the clinical cases was larger than 99%. The speedup factor between DPM and PENELOPE ranged from 2.5 ×, for the simulation of the radiation transport through a MLC and the subsequent dose estimation in a water phantom, up to 11.8 × for a lung treatment. A further increase of the computational speed, up to 25 ×, can be obtained in the clinical cases when a voxel size of (2.5 mm)3 is used. CONCLUSIONS: DPM has been incorporated as an efficient and accurate Monte Carlo engine for dose estimation in PRIMO. It allows the concatenated simulation of the patient-dependent part of the linac and the patient geometry in static and dynamic treatments. The discrepancy observed between DPM and PENELOPE, which is due to an artifact of the cross section interpolation algorithm for low energy electrons in air, does not affect the results in other materials.


Subject(s)
Brain Neoplasms/radiotherapy , Head and Neck Neoplasms/radiotherapy , Lung Neoplasms/radiotherapy , Monte Carlo Method , Particle Accelerators/instrumentation , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Computer Simulation , Humans , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Software
15.
Med Phys ; 45(4): 1699-1707, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29399810

ABSTRACT

PURPOSE: Brachytherapy with 106 Ru/106 Rh plaques offers good outcomes for small-to-medium choroidal melanomas and retinoblastomas. The dose measurement of the plaques is challenging, due to the small range of the emitted beta particles and steep dose gradients involved. The scarce publications on film dosimetry of 106 Ru/106 Rh plaques used solid phantoms. This work aims to develop a practical method for measuring the absorbed dose distribution in water produced by 106 Ru/106 Rh plaques using EBT3 radiochromic film. METHODS: Experimental setups were developed to determine the dose distribution at a plane perpendicular to the symmetry axis of the plaque and at a plane containing the symmetry axis. One CCA and two CCX plaques were studied. The dose maps were obtained with the FilmQA Pro 2015 software, using the triple-channel dosimetry method. The measured dose distributions were compared to published Monte Carlo simulation and experimental data. RESULTS: A good agreement was found between measurements and simulations, improving upon published data. Measured reference dose rates agreed within the experimental uncertainty with data obtained by the manufacturer using a scintillation detector, with typical differences below 5%. The attained experimental uncertainty was 4.1% (k = 1) for the perpendicular setup, and 7.9% (k = 1) for the parallel setup. These values are similar or smaller than those obtained by the manufacturer and other authors, without the need of solid phantoms that are not available to most users. CONCLUSIONS: The proposed method may be useful to the users to perform quality assurance preclinical tests of 106 Ru/106 Rh plaques.


Subject(s)
Brachytherapy , Eye/radiation effects , Film Dosimetry , Radiation Dosage , Radioisotopes/therapeutic use , Rhodium/therapeutic use , Ruthenium Radioisotopes/therapeutic use , Water , Monte Carlo Method , Radiotherapy Dosage
16.
Ocul Oncol Pathol ; 3(3): 204-209, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29071271

ABSTRACT

BACKGROUND: The distribution of the emitter substance in 106Ru eye plaques is usually assumed to be homogeneous for treatment planning purposes. However, this distribution is never homogeneous, and it widely differs from plaque to plaque due to manufacturing factors. METHODS: By Monte Carlo simulation of radiation transport, we study the absorbed dose distribution obtained from the specific CCA1364 and CCB1256 106Ru plaques, whose actual emitter distributions were measured. The idealized, homogeneous CCA and CCB plaques are also simulated. RESULTS: The largest discrepancy in depth dose distribution observed between the heterogeneous and the homogeneous plaques was 7.9 and 23.7% for the CCA and CCB plaques, respectively. In terms of isodose lines, the line referring to 100% of the reference dose penetrates 0.2 and 1.8 mm deeper in the case of heterogeneous CCA and CCB plaques, respectively, with respect to the homogeneous counterpart. CONCLUSIONS: The observed differences in absorbed dose distributions obtained from heterogeneous and homogeneous plaques are clinically irrelevant if the plaques are used with a lateral safety margin of at least 2 mm. However, these differences may be relevant if the plaques are used in eccentric positioning.

17.
Med Phys ; 44(6): 2581-2585, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28370303

ABSTRACT

PURPOSE: To assess the influence of the 106 Rh gamma spectrum on the Monte Carlo simulation of 106 Ru/106 Rh ophthalmic plaques, which has been neglected without a quantitative estimation in all previous publications. METHODS: Simulations were run with the penelope 2014 Monte Carlo code for radiation transport. Depth-dose distributions in water were simulated for the plaque models CCA, CCC, CCX and CIA. In addition to the 106 Rh beta spectrum, all gamma components from the 106 Rh gamma spectrum were included in the simulations. Depth-dose curves were compared with those obtained without considering the 106 Rh gamma spectrum. Moreover, half-value (HVL) and tenth-value layers (TVL) were estimated for the 106 Rh gamma spectrum in water, PMMA, stainless steel and lead. Some practical radiation protection applications were discussed. Parallel computing was implemented to reduce computing time. RESULTS: The contribution of the 106 Rh gamma spectrum on the depth-dose curves is negligible at depths of clinical interest. The HVL and TVL of the 106 Rh gamma spectrum were found to be similar to those of 137 Cs. The air-kerma rate at 1 m for a CCA plaque in typical clinical conditions was about 0.4µGym2h-1, resulting in equivalent doses at that point elow 0.05 mSv during a treatment. The air-kerma rate would be underestimated by a factor of 5 if the 106 Rh gamma spectrum were not considered. Also, a freely available software tool was developed to ease parallelization of penelope 2014 simulations that use penmain as steering main program. CONCLUSIONS: The influence of the 106 Rh gamma spectrum is not relevant for clinical purposes, thus validating the common assumption from the literature. However, for simulations at large distances from the plaques, such as for radiation shielding assessment and estimation of dose to personnel, the gamma spectrum from 106 Rh must be taken into account to obtain accurate results.


Subject(s)
Monte Carlo Method , Radiation Protection , Software , Computer Simulation , Humans , Radiometry , Water
18.
Strahlenther Onkol ; 193(4): 243-259, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27888282

ABSTRACT

General-purpose radiation transport Monte Carlo codes have been used for estimation of the absorbed dose distribution in external photon and electron beam radiotherapy patients since several decades. Results obtained with these codes are usually more accurate than those provided by treatment planning systems based on non-stochastic methods. Traditionally, absorbed dose computations based on general-purpose Monte Carlo codes have been used only for research, owing to the difficulties associated with setting up a simulation and the long computation time required. To take advantage of radiation transport Monte Carlo codes applied to routine clinical practice, researchers and private companies have developed treatment planning and dose verification systems that are partly or fully based on fast Monte Carlo algorithms. This review presents a comprehensive list of the currently existing Monte Carlo systems that can be used to calculate or verify an external photon and electron beam radiotherapy treatment plan. Particular attention is given to those systems that are distributed, either freely or commercially, and that do not require programming tasks from the end user. These systems are compared in terms of features and the simulation time required to compute a set of benchmark calculations.


Subject(s)
Models, Statistical , Monte Carlo Method , Neoplasms/radiotherapy , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Software , Algorithms , Computer Simulation , Humans , Radiotherapy Dosage
19.
Appl Radiat Isot ; 108: 64-74, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26704703

ABSTRACT

The peak efficiency for photons hitting the frontal surface of a medium volume n-type HPGe coaxial detector is mapped using acutely collimated beams of energies between 31 and 383 keV from a (133)Ba radioactive source. Simulated values obtained with the Monte Carlo radiation transport code penelope, using a model that respected actual detector dimensions and physical constants while varying dead-layer thicknesses, allowed us to fit the experimental results in the detector bulk but not near its rim. The spectra of a (137)Cs source were measured using the detector shielded from the natural background radiation, with and without a broad angle collimator. The corresponding simulated spectra, using the fitted dead-layer thicknesses, underestimate the continuum component of the spectra and overestimate the peak efficiency, by less than ten percent in the broad angle collimator arrangement. The simulated results are sensitive to the photon attenuation coefficients.


Subject(s)
Models, Statistical , Monte Carlo Method , Photons , Radiometry/instrumentation , Radiometry/methods , Semiconductors , Computer Simulation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis/methods , Radiation Dosage , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity
20.
Med Phys ; 42(6): 2877-81, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26127040

ABSTRACT

PURPOSE: The Monte Carlo simulation of electron transport in Linac targets using the condensed history technique is known to be problematic owing to a potential dependence of absorbed dose distributions on the electron step length. In the PENELOPE code, the step length is partially determined by the transport parameters C1 and C2. The authors have investigated the effect on the absorbed dose distribution of the values given to these parameters in the target. METHODS: A monoenergetic 6.26 MeV electron pencil beam from a point source was simulated impinging normally on a cylindrical tungsten target. Electrons leaving the tungsten were discarded. Radial absorbed dose profiles were obtained at 1.5 cm of depth in a water phantom located at 100 cm for values of C1 and C2 in the target both equal to 0.1, 0.01, or 0.001. A detailed simulation case was also considered and taken as the reference. Additionally, lateral dose profiles were estimated and compared with experimental measurements for a 6 MV photon beam of a Varian Clinac 2100 for the cases of C1 and C2 both set to 0.1 or 0.001 in the target. RESULTS: On the central axis, the dose obtained for the case C1 = C2 = 0.1 shows a deviation of (17.2% ± 1.2%) with respect to the detailed simulation. This difference decreases to (3.7% ± 1.2%) for the case C1 = C2 = 0.01. The case C1 = C2 = 0.001 produces a radial dose profile that is equivalent to that of the detailed simulation within the reached statistical uncertainty of 1%. The effect is also appreciable in the crossline dose profiles estimated for the realistic geometry of the Linac. In another simulation, it was shown that the error made by choosing inappropriate transport parameters can be masked by tuning the energy and focal spot size of the initial beam. CONCLUSIONS: The use of large path lengths for the condensed simulation of electrons in a Linac target with PENELOPE conducts to deviations of the dose in the patient or phantom. Based on the results obtained in this work, values of C1 and C2 larger than 0.001 should not be used in Linac targets without further investigation.


Subject(s)
Algorithms , Monte Carlo Method , Particle Accelerators , Electron Transport , Phantoms, Imaging , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...