Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
1.
New Phytol ; 243(3): 1205-1219, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38855965

ABSTRACT

Decades of studies have demonstrated links between biodiversity and ecosystem functioning, yet the generality of the relationships and the underlying mechanisms remain unclear, especially for forest ecosystems. Using 11 tree-diversity experiments, we tested tree species richness-community productivity relationships and the role of arbuscular (AM) or ectomycorrhizal (ECM) fungal-associated tree species in these relationships. Tree species richness had a positive effect on community productivity across experiments, modified by the diversity of tree mycorrhizal associations. In communities with both AM and ECM trees, species richness showed positive effects on community productivity, which could have resulted from complementarity between AM and ECM trees. Moreover, both AM and ECM trees were more productive in mixed communities with both AM and ECM trees than in communities assembled by their own mycorrhizal type of trees. In communities containing only ECM trees, species richness had a significant positive effect on productivity, whereas species richness did not show any significant effects on productivity in communities containing only AM trees. Our study provides novel explanations for variations in diversity-productivity relationships by suggesting that tree-mycorrhiza interactions can shape productivity in mixed-species forest ecosystems.


Subject(s)
Biodiversity , Mycorrhizae , Trees , Mycorrhizae/physiology , Trees/microbiology , Species Specificity
2.
Ecol Evol ; 14(6): e11530, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895566

ABSTRACT

The capacity of forests to sequester carbon in both above- and belowground compartments is a crucial tool to mitigate rising atmospheric carbon concentrations. Belowground carbon storage in forests is strongly linked to soil microbial communities that are the key drivers of soil heterotrophic respiration, organic matter decomposition and thus nutrient cycling. However, the relationships between tree diversity and soil microbial properties such as biomass and respiration remain unclear with inconsistent findings among studies. It is unknown so far how the spatial configuration and soil depth affect the relationship between tree richness and microbial properties. Here, we studied the spatial distribution of soil microbial properties in the context of a tree diversity experiment by measuring soil microbial biomass and respiration in subtropical forests (BEF-China experiment). We sampled soil cores at two depths at five locations along a spatial transect between the trees in mono- and hetero-specific tree pairs of the native deciduous species Liquidambar formosana and Sapindus saponaria. Our analyses showed decreasing soil microbial biomass and respiration with increasing soil depth and distance from the tree in mono-specific tree pairs. We calculated belowground overyielding of soil microbial biomass and respiration - which is higher microbial biomass or respiration than expected from the monocultures - and analysed the distribution patterns along the transect. We found no general overyielding across all sampling positions and depths. Yet, we encountered a spatial pattern of microbial overyielding with a significant microbial overyielding close to L. formosana trees and microbial underyielding close to S. saponaria trees. We found similar spatial patterns across microbial properties and depths that only differed in the strength of their effects. Our results highlight the importance of small-scale variations of tree-tree interaction effects on soil microbial communities and functions and are calling for better integration of within-plot variability to understand biodiversity-ecosystem functioning relationships.

3.
New Phytol ; 242(4): 1691-1703, 2024 May.
Article in English | MEDLINE | ID: mdl-38659111

ABSTRACT

Understanding the complex interactions between trees and fungi is crucial for forest ecosystem management, yet the influence of tree mycorrhizal types, species identity, and diversity on tree-tree interactions and their root-associated fungal communities remains poorly understood. Our study addresses this gap by investigating root-associated fungal communities of different arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) tree species pairs (TSPs) in a subtropical tree diversity experiment, spanning monospecific, two-species, and multi-species mixtures, utilizing Illumina sequencing of the ITS2 region. The study reveals that tree mycorrhizal type significantly impacts the alpha diversity of root-associated fungi in monospecific stands. Meanwhile, tree species identity's influence is modulated by overall tree diversity. Tree-related variables and spatial distance emerged as major drivers of variations in fungal community composition. Notably, in multi-species mixtures, compositional differences between root fungal communities of AM and EcM trees diminish, indicating a convergence of fungal communities irrespective of mycorrhizal type. Interestingly, dual mycorrhizal fungal communities were observed in these multi-species mixtures. This research underscores the pivotal role of mycorrhizal partnerships and the interplay of biotic and abiotic factors in shaping root fungal communities, particularly in varied tree diversity settings, and its implications for effective forest management and biodiversity conservation.


Subject(s)
Biodiversity , Forests , Mycobiome , Mycorrhizae , Plant Roots , Species Specificity , Trees , Mycorrhizae/physiology , Trees/microbiology , Plant Roots/microbiology
4.
Nat Commun ; 15(1): 2078, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453933

ABSTRACT

Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems.


Subject(s)
Biodiversity , Ecosystem , Plants , Biomass , Forests , Grassland
6.
Plant Methods ; 20(1): 19, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38303074

ABSTRACT

BACKGROUND: Herbaria are becoming increasingly important as archives of biodiversity, and play a central role in taxonomic and biogeographic studies. There is also an ongoing interest in functional traits and the way they mediate interactions between a plant species and its environment. Herbarium specimens allow tracking trait values over time, and thus, capturing consequences of anthropogenic activities such as eutrophication. Here, we present an open, reproducible, non-destructive workflow to collect leaf trait data from herbarium specimens using near-infrared spectroscopy (NIRS), and a proof of concept for the reliability of this approach. RESULTS: We carried out three experiments to test the suitability of non-destructive NIRS methods to predict leaf traits both for fresh and dried leaves: (1) With a fertilization experiment, we studied whether NIRS was able to capture changes in leaf N and leaf P during a fertilization experiment and we compared contents predicted by NIRS with results obtained from regular wet lab methods. Calibration models for leaf nitrogen and phosphorus contents had a quality of R2 = 0.7 and 0.5, respectively. We fitted calibration models for NIRS readings on fresh and dried leaf samples, both of which produced equally precise predictions compared to results from wet lab analyses. (2) We tested the effect of herbarium conservation on NIRS readings by simulating them through the application of six treatments combining freezing, drying and pesticide spraying in a factorial scheme and comparing these with untreated samples. No consistent changes were observed in the spectra quality before and after the simulated herbarium conditions. (3) Finally, we studied the effect of specimen storage duration using specimens from a 2018 study which were re-analyzed and compared with spectra obtained in 2021. No consistent changes in spectra were observed after the storage period. CONCLUSIONS: The results demonstrate the reliability of NIRS to measure leaf N and P on herbarium samples. Together with the calibration method and dataset presented here, they provide a toolset allowing researchers to study the development of leaf traits and their response to environmental changes over decades and even centuries in a fast and non-destructive manner.

7.
Glob Chang Biol ; 30(2): e17189, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38375686

ABSTRACT

Terrestrial ecosystems affect climate by reflecting solar irradiation, evaporative cooling, and carbon sequestration. Yet very little is known about how plant traits affect climate regulation processes (CRPs) in different habitat types. Here, we used linear and random forest models to relate the community-weighted mean and variance values of 19 plant traits (summarized into eight trait axes) to the climate-adjusted proportion of reflected solar irradiation, evapotranspiration, and net primary productivity across 36,630 grid cells at the European extent, classified into 10 types of forest, shrubland, and grassland habitats. We found that these trait axes were more tightly linked to log evapotranspiration (with an average of 6.2% explained variation) and the proportion of reflected solar irradiation (6.1%) than to net primary productivity (4.9%). The highest variation in CRPs was explained in forest and temperate shrubland habitats. Yet, the strength and direction of these relationships were strongly habitat-dependent. We conclude that any spatial upscaling of the effects of plant communities on CRPs must consider the relative contribution of different habitat types.


Subject(s)
Ecosystem , Grassland , Plants , Climate , Climatic Processes , Biodiversity
9.
Ecol Lett ; 27(1): e14338, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38030225

ABSTRACT

Understanding the mechanisms underlying diversity-productivity relationships (DPRs) is crucial to mitigating the effects of forest biodiversity loss. Tree-tree interactions in diverse communities are fundamental in driving growth rates, potentially shaping the emergent DPRs, yet remain poorly explored. Here, using data from a large-scale forest biodiversity experiment in subtropical China, we demonstrated that changes in individual tree productivity were driven by species-specific pairwise interactions, with higher positive net pairwise interaction effects on trees in more diverse neighbourhoods. By perturbing the interactions strength from empirical data in simulations, we revealed that the positive differences between inter- and intra-specific interactions were the critical determinant for the emergence of positive DPRs. Surprisingly, the condition for positive DPRs corresponded to the condition for coexistence. Our results thus provide a novel insight into how pairwise tree interactions regulate DPRs, with implications for identifying the tree mixtures with maximized productivity to guide forest restoration and reforestation efforts.


Subject(s)
Forests , Trees , Trees/physiology , Biodiversity , China , Ecosystem
10.
Nature ; 624(7990): 92-101, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37957399

ABSTRACT

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.


Subject(s)
Carbon Sequestration , Carbon , Conservation of Natural Resources , Forests , Biodiversity , Carbon/analysis , Carbon/metabolism , Conservation of Natural Resources/statistics & numerical data , Conservation of Natural Resources/trends , Human Activities , Environmental Restoration and Remediation/trends , Sustainable Development/trends , Global Warming/prevention & control
11.
Sci Adv ; 9(40): eadi2362, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37801499

ABSTRACT

Tree species diversity and mycorrhizal associations play a central role for forest productivity, but factors driving positive biodiversity-productivity relationships remain poorly understood. In a biodiversity experiment manipulating tree diversity and mycorrhizal associations, we examined the roles of above- and belowground processes in modulating wood productivity in young temperate tree communities and potential underlying mechanisms. We found that tree species richness, but not mycorrhizal associations, increased forest productivity by enhancing aboveground structural complexity within communities. Structurally complex communities were almost twice as productive as structurally simple stands, particularly when light interception was high. We further demonstrate that overyielding was largely explained by positive net biodiversity effects on structural complexity with functional variation in shade tolerance and taxonomic diversity being key drivers of structural complexity in mixtures. Consideration of stand structural complexity appears to be a crucial element in predicting carbon sequestration in the early successional stages of mixed-species forests.


Subject(s)
Forests , Trees , Biodiversity , Wood , Carbon Sequestration
12.
Oecologia ; 203(1-2): 205-218, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37831151

ABSTRACT

There are many factors known to drive species turnover, although the mechanisms by which these operate are less clear. Based on comprehensive datasets from the largest tree diversity experiment worldwide (BEF-China), we used shared herbivore species (zeta diversity) and multi-site generalized dissimilarity modelling to investigate the patterns and determinants of species turnover of Lepidoptera herbivores among study plots across a gradient in tree species richness. We found that zeta diversity declined sharply with an increasing number of study plots, with complete changes in caterpillar species composition observed even at the fine spatial scale of our study. Plant community characteristics rather than abiotic factors were found to play key roles in driving caterpillar compositional turnover, although these effects varied with an increasing number of study plots considered, due to the varying contributions of rare and common species to compositional turnover. Our study reveals details of the impact of phylogeny- and trait-mediated processes of trees on herbivore compositional turnover, which has implications for forest management and conservation and shows potential avenues for maintenance of heterogeneity in herbivore communities.


Subject(s)
Herbivory , Trees , Biodiversity , Forests , Plants
13.
Nat Plants ; 9(11): 1795-1809, 2023 11.
Article in English | MEDLINE | ID: mdl-37872262

ABSTRACT

Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.


Subject(s)
Ecosystem , Trees , Humans , Trees/metabolism , Forests , Plant Leaves/metabolism , Habits , Carbon/metabolism
15.
New Phytol ; 240(5): 1774-1787, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37743552

ABSTRACT

Evolutionary radiations of woody taxa within arid environments were made possible by multiple trait innovations including deep roots and embolism-resistant xylem, but little is known about how these traits have coevolved across the phylogeny of woody plants or how they jointly influence the distribution of species. We synthesized global trait and vegetation plot datasets to examine how rooting depth and xylem vulnerability across 188 woody plant species interact with aridity, precipitation seasonality, and water table depth to influence species occurrence probabilities across all biomes. Xylem resistance to embolism and rooting depth are independent woody plant traits that do not exhibit an interspecific trade-off. Resistant xylem and deep roots increase occurrence probabilities in arid, seasonal climates over deep water tables. Resistant xylem and shallow roots increase occurrence probabilities in arid, nonseasonal climates over deep water tables. Vulnerable xylem and deep roots increase occurrence probabilities in arid, nonseasonal climates over shallow water tables. Lastly, vulnerable xylem and shallow roots increase occurrence probabilities in humid climates. Each combination of trait values optimizes occurrence probabilities in unique environmental conditions. Responses of deeply rooted vegetation may be buffered if evaporative demand changes faster than water table depth under climate change.


Subject(s)
Embolism , Groundwater , Water/physiology , Wood/physiology , Xylem/physiology , Plants , Plant Leaves/physiology , Droughts
16.
Nature ; 621(7980): 773-781, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37612513

ABSTRACT

Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.


Subject(s)
Biodiversity , Environment , Introduced Species , Trees , Databases, Factual , Human Activities , Introduced Species/statistics & numerical data , Introduced Species/trends , Phylogeny , Rain , Temperature , Trees/classification , Trees/physiology
18.
Ecol Evol ; 13(4): e10002, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37091560

ABSTRACT

While mycorrhization rates have been studied in different contexts, not much is known about their temporal patterns across seasons. Here, we asked how mycorrhization rates of 10 deciduous trees assessed by microscopy changed from winter to spring to early summer. We made use of a tree diversity experiment on nutrient-rich soil (former farmland) in Central Germany. In the experiment, saplings of host species with a preference for either arbuscular mycorrhiza (AM) or ectomycorrhiza (EM) were planted in monocultures, two-species, and four-species mixtures. In addition, mixtures were composed of tree species of only one mycorrhizal type or by AM/EM trees. For almost all species, with the exception of Aesculus hippocastanum and Acer pseudoplatanus (only AM), dual mycorrhization with both types (AM and EM) was found at every sampling time (December, March, and May), although the expected preferences for certain mycorrhizal types were confirmed. The sampling date had a significant influence on mycorrhization rates of both EM and AM tree species. Frequencies of EM and AM were lowest in May, but there were no differences between December and March. The causes of this seasonal variation may be associated with climate-induced differences in carbon allocation to mycorrhizal tree roots in the temperate climate. Within individual trees, mycorrhization rates by AM and EM fungi were not correlated over time, pointing to asynchronous variation between both types and to independent drivers for AM and EM mycorrhization. At the community level, mycorrhiza frequency of either of the two types became more asynchronous from two-species to four-species mixtures. Thus, increased community asynchrony in mycorrhization could be another important mechanism in biodiversity-ecosystem functioning relationships.

19.
Nat Ecol Evol ; 7(6): 832-840, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37106157

ABSTRACT

Forests sustain 80% of terrestrial biodiversity and provide essential ecosystem services. Biodiversity experiments have demonstrated that plant diversity correlates with both primary productivity and higher trophic diversity. However, whether higher trophic diversity can mediate the effects of plant diversity on productivity remains unclear. Here, using 5 years of data on aboveground herbivorous, predatory and parasitoid arthropods along with tree growth data within a large-scale forest biodiversity experiment in southeast China, we provide evidence of multidirectional enhancement among the diversity of trees and higher trophic groups and tree productivity. We show that the effects of experimentally increased tree species richness were consistently positive for species richness and abundance of herbivores, predators and parasitoids. Richness effects decreased as trophic levels increased for species richness and abundance of all trophic groups. Multitrophic species richness and abundance of arthropods were important mediators of plant diversity effects on tree productivity, suggesting that optimizing forest management for increased carbon capture can be more effective when the diversity of higher trophic groups is promoted in concert with that of trees.


Subject(s)
Arthropods , Animals , Trees , Ecosystem , Biodiversity , Forests , Plants
20.
Microbiol Spectr ; 11(2): e0457822, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36951585

ABSTRACT

Soil microbial communities play crucial roles in the earth's biogeochemical cycles. Yet, their genomic potential for nutrient cycling in association with tree mycorrhizal type and tree-tree interactions remained unclear, especially in diverse tree communities. Here, we studied the genomic potential of soil fungi and bacteria with arbuscular (AM) and ectomycorrhizal (EcM) conspecific tree species pairs (TSPs) at three tree diversity levels in a subtropical tree diversity experiment (BEF-China). The soil fungi and bacteria of the TSPs' interaction zone were characterized by amplicon sequencing, and their subcommunities were determined using a microbial interkingdom co-occurrence network approach. Their potential genomic functions were predicted with regard to the three major nutrients carbon (C), nitrogen (N), and phosphorus (P) and their combinations. We found the microbial subcommunities that were significantly responding to different soil characteristics. The tree mycorrhizal type significantly influenced the functional composition of these co-occurring subcommunities in monospecific stands and two-tree-species mixtures but not in mixtures with more than three tree species (here multi-tree-species mixtures). Differentiation of subcommunities was driven by differentially abundant taxa producing different sets of nutrient cycling enzymes across the tree diversity levels, predominantly enzymes of the P (n = 11 and 16) cycles, followed by the N (n = 9) and C (n = 9) cycles, in monospecific stands and two-tree-species mixtures, respectively. Fungi of the Agaricomycetes, Sordariomycetes, Eurotiomycetes, and Leotiomycetes and bacteria of the Verrucomicrobia, Acidobacteria, Alphaproteobacteria, and Actinobacteria were the major differential contributors (48% to 62%) to the nutrient cycling functional abundances of soil microbial communities across tree diversity levels. Our study demonstrated the versatility and significance of microbial subcommunities in different soil nutrient cycling processes of forest ecosystems. IMPORTANCE Loss of multifunctional microbial communities can negatively affect ecosystem services, especially forest soil nutrient cycling. Therefore, exploration of the genomic potential of soil microbial communities, particularly their constituting subcommunities and taxa for nutrient cycling, is vital to get an in-depth mechanistic understanding for better management of forest soil ecosystems. This study revealed soil microbes with rich nutrient cycling potential, organized in subcommunities that are functionally resilient and abundant. Such microbial communities mainly found in multi-tree-species mixtures associated with different mycorrhizal partners can foster soil microbiome stability. A stable and functionally rich soil microbiome is involved in the cycling of nutrients, such as carbon, nitrogen, and phosphorus, and their combinations could have positive effects on ecosystem functioning, including increased forest productivity. The new findings could be highly relevant for afforestation and reforestation regimes, notably in the face of growing deforestation and global warming scenarios.


Subject(s)
Microbiota , Mycorrhizae , Mycorrhizae/genetics , Trees/microbiology , Soil/chemistry , Soil Microbiology , Bacteria/genetics , Phosphorus , Nitrogen , Carbon
SELECTION OF CITATIONS
SEARCH DETAIL
...