Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Biochemistry (Mosc) ; 89(Suppl 1): S127-S147, 2024 Jan.
Article En | MEDLINE | ID: mdl-38621748

The strategies of future medicine are aimed to modernize and integrate quality approaches including early molecular-genetic profiling, identification of new therapeutic targets and adapting design for clinical trials, personalized drug screening (PDS) to help predict and individualize patient treatment regimens. In the past decade, organoid models have emerged as an innovative in vitro platform with the potential to realize the concept of patient-centered medicine. Organoids are spatially restricted three-dimensional clusters of cells ex vivo that self-organize into complex functional structures through genetically programmed determination, which is crucial for reconstructing the architecture of the primary tissue and organs. Currently, there are several strategies to create three-dimensional (3D) tumor systems using (i) surgically resected patient tissue (PDTOs, patient-derived tumor organoids) or (ii) single tumor cells circulating in the patient's blood. Successful application of 3D tumor models obtained by co-culturing autologous tumor organoids (PDTOs) and peripheral blood lymphocytes have been demonstrated in a number of studies. Such models simulate a 3D tumor architecture in vivo and contain all cell types characteristic of this tissue, including immune system cells and stem cells. Components of the tumor microenvironment, such as fibroblasts and immune system cells, affect tumor growth and its drug resistance. In this review, we analyzed the evolution of tumor models from two-dimensional (2D) cell cultures and laboratory animals to 3D tissue-specific tumor organoids, their significance in identifying mechanisms of antitumor response and drug resistance, and use of these models in drug screening and development of precision methods in cancer treatment.


Neoplasms , Precision Medicine , Animals , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Organoids , Drug Evaluation, Preclinical , Tumor Microenvironment
2.
Int J Mol Sci ; 25(8)2024 Apr 21.
Article En | MEDLINE | ID: mdl-38674130

IQGAP3 (IQ Motif Containing GTPase Activating Protein 3) is member of the IQGAP family of scaffold proteins, which are essential for assembling multiprotein complexes that coordinate various intracellular signaling pathways. Previous research has shown that IQGAP3 is overexpressed in psoriatic skin lesions. Given its involvement in processes like cell proliferation and chemokine signaling, we sought to explore its molecular role in driving the psoriatic phenotype of keratinocytes. By conducting transcriptome profiling of HaCaT keratinocytes, we identified numerous psoriasis-associated pathways that were affected when IQGAP3 was knocked down. These included alterations in NFkB signaling, EGFR signaling, activation of p38/MAPK and ERK1/ERK2, lipid metabolism, cytokine production, and the response to inflammatory cytokine stimulation. Real-time analysis further revealed changes in cell growth dynamics, including proliferation and wound healing. The balance between cell proliferation and apoptosis was altered, as were skin barrier functions and the production of IL-6 and IFNγ. Despite these significant findings, the diversity of the alterations observed in the knockdown cells led us to conclude that IQGAP3 may not be the best target for the therapeutic inhibition to normalize the phenotype of keratinocytes in psoriasis.


Cell Proliferation , GTPase-Activating Proteins , Keratinocytes , Psoriasis , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Psoriasis/metabolism , Psoriasis/pathology , Psoriasis/genetics , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , Signal Transduction , HaCaT Cells , Cytokines/metabolism , Apoptosis , Skin/metabolism , Skin/pathology , Cell Line , Gene Expression Profiling
3.
Int J Mol Sci ; 24(23)2023 Nov 22.
Article En | MEDLINE | ID: mdl-38068927

In previous work, we experimentally demonstrated the possibility of using RNA aptamers to inhibit endogenous protein expression and their function within plant cells In the current work, we show that our proposed method is suitable for inhibiting the functions of exogenous, foreign proteins delivered into the plant via various mechanisms, including pathogen proteins. Stringent experimentation produced robust RNA aptamers that are able to bind to the recombinant HopU1 effector protein of P. syringae bacteria. This research uses genetic engineering methods to constitutively express/transcribe HopU1 RNA aptamers in transgenic A. thaliana. Our findings support the hypothesis that HopU1 aptamers can actively interfere with the function of the HopU1 protein and thereby increase resistance to phytopathogens of the genus P. syringae pv. tomato DC 3000.


Aptamers, Nucleotide , Aptamers, Nucleotide/pharmacology , Aptamers, Nucleotide/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Plants, Genetically Modified/genetics , Pseudomonas syringae/metabolism , Plant Diseases/microbiology , Plant Proteins/genetics
4.
Biochemistry (Mosc) ; 88(Suppl 1): S123-S149, 2023 Jan.
Article En | MEDLINE | ID: mdl-37069118

One of the latest methods in modern molecular biology is labeling genomic loci in living cells using fluorescently labeled Cas protein. The NIH Foundation has made the mapping of the 4D nucleome (the three-dimensional nucleome on a timescale) a priority in the studies aimed to improve our understanding of chromatin organization. Fluorescent methods based on CRISPR-Cas are a significant step forward in visualization of genomic loci in living cells. This approach can be used for studying epigenetics, cell cycle, cellular response to external stimuli, rearrangements during malignant cell transformation, such as chromosomal translocations or damage, as well as for genome editing. In this review, we focused on the application of CRISPR-Cas fluorescence technologies as components of multimodal imaging methods for in vivo mapping of chromosomal loci, in particular, attribution of fluorescence signal to morphological and anatomical structures in a living organism. The review discusses the approaches to the highly sensitive, high-precision labeling of CRISPR-Cas components, delivery of genetically engineered constructs into cells and tissues, and promising methods for molecular imaging.


CRISPR-Cas Systems , Gene Editing , Gene Editing/methods , Genome , Genomics , Microscopy, Fluorescence
5.
J Fungi (Basel) ; 9(1)2023 Jan 12.
Article En | MEDLINE | ID: mdl-36675923

Mycelial fungi grow as colonies consisting of polar growing hyphae, developing radially from spore or inoculum. Over time, the colony develops, hyphae are subject to various exogenous or endogenous stimuli, and mycelium becomes heterogeneous in growth, gene expression, biosynthesis, and secretion of proteins and metabolites. Although the biochemical and molecular mechanisms of mycelium heterogeneity have been the subject of many studies, the role of lipids in colony development and zonality is still not understood. This work was undertaken to extend our knowledge of mycelium heterogeneity and to answer the question of how different lipid molecular species are distributed in the surface colony of the basidial fungus Flammulina velutipes and how this distribution correlates with its morphology. The heterogeneity in the lipid metabolism and lipid composition of the fungal mycelium was demonstrated. According to the real-time PCR and LC-MS/MS results, the expression of genes of PC metabolism, accumulation of phospholipid classes, and degree of unsaturation of PC and PE increased in the direction from the center to the periphery of the colony. The peripheral zone of the colony was characterized by a higher value of the PC/PE ratio and a higher level of phospholipids esterified by linolenic acid. Considering that the synthesis of phospholipids in fungi occurs in different ways, we also conducted experiments with deuterium-labeled phospholipid precursors and found out that the Kennedy pathway is the predominant route for PC biosynthesis in F. velutipes. The zonal differences in gene expression and lipid composition can be explained by the participation of membrane lipids in polar growth maintenance and regulation.

6.
Ann Hum Biol ; 48(4): 313-320, 2021 Jun.
Article En | MEDLINE | ID: mdl-34241552

BACKGROUND AND AIM: Human evolution resulted from changes in our biology, behaviour, and culture. One source of these changes has been hypothesised to be our self-domestication (that is, the development in humans of features commonly found in domesticated strains of mammals, seemingly as a result of selection for reduced aggression). Signals of domestication, notably brain size reduction, have increased in recent times. METHODS: In this paper, we compare whole-genome data between the Late Neolithic/Bronze Age individuals and modern Europeans. RESULTS: We show that genes associated with mammal domestication and with neural crest development and function are significantly differently enriched in nonsynonymous single nucleotide polymorphisms between these two groups. CONCLUSION: We hypothesise that these changes might account for the increased features of self-domestication in modern humans and, ultimately, for subtle recent changes in human cognition and behaviour, including language.


Domestication , Language , Animals , Humans , Mammals/genetics , Neural Crest , White People
7.
Philos Trans R Soc Lond B Biol Sci ; 375(1812): 20190569, 2020 11 23.
Article En | MEDLINE | ID: mdl-33012225

Yersinia pestis, the causative agent of plague, has been prevalent among humans for at least 5000 years, being accountable for several devastating epidemics in history, including the Black Death. Analyses of the genetic diversity of ancient strains of Y. pestis have shed light on the mechanisms of evolution and the spread of plague in Europe. However, many questions regarding the origins of the pathogen and its long persistence in Europe are still unresolved, especially during the late medieval time period. To address this, we present four newly assembled Y. pestis genomes from Eastern Europe (Poland and Southern Russia), dating from the fifteenth to eighteenth century AD. The analysis of polymorphisms in these genomes and their phylogenetic relationships with other ancient and modern Y. pestis strains may suggest several independent introductions of plague into Eastern Europe or its persistence in different reservoirs. Furthermore, with the reconstruction of a partial Y. pestis genome from rat skeletal remains found in a Polish ossuary, we were able to identify a potential animal reservoir in late medieval Europe. Overall, our results add new information concerning Y. pestis transmission and its evolutionary history in Eastern Europe. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.


Disease Reservoirs/veterinary , Genome, Bacterial , Plague/history , Yersinia pestis/genetics , Animals , History, 15th Century , History, 16th Century , History, 17th Century , History, 18th Century , Phylogeny , Plague/transmission , Poland , Rats , Rodent Diseases/microbiology , Russia , Yersinia pestis/classification
8.
Mol Biol Evol ; 36(1): 127-140, 2019 01 01.
Article En | MEDLINE | ID: mdl-30376122

The beginning of civilization was a turning point in human evolution. With increasing separation from the natural environment, mankind stimulated new adaptive reactions in response to new environmental factors. In this paper, we describe direct signs of these reactions in the European population during the past 6,000 years. By comparing whole-genome data between Late Neolithic/Bronze Age individuals and modern Europeans, we revealed biological pathways that are significantly differently enriched in nonsynonymous single nucleotide polymorphisms in these two groups and which therefore could be shaped by cultural practices during the past six millennia. They include metabolic transformations, immune response, signal transduction, physical activity, sensory perception, reproduction, and cognitive functions. We demonstrated that these processes were influenced by different types of natural selection. We believe that our study opens new perspectives for more detailed investigations about when and how civilization has been modifying human genomes.


Civilization , Evolution, Molecular , Genome, Human , Polymorphism, Single Nucleotide , White People/genetics , Humans , Metabolic Networks and Pathways , Selection, Genetic
9.
J Plant Physiol ; 232: 127-129, 2019 Jan.
Article En | MEDLINE | ID: mdl-30537599

The scope of RNA-aptamers application is becoming wider and has expanded beyond solely medical use. We propose the use of RNA-aptamers in plants to suppress the functions of individual proteins, thereby achieving resistance to various biotic and abiotic stresses. In current work we experimentally demonstrate the possibility of inhibiting protein activity in N. bentamiana plants by quenching the fluorescence level of GFP (green fluorescent protein) as a result of specifically selected RNA-aptamer binding action.


Aptamers, Nucleotide/metabolism , Plant Proteins/metabolism , Green Fluorescent Proteins/metabolism , Plant Proteins/physiology , Nicotiana/metabolism
10.
Biochim Biophys Acta Mol Basis Dis ; 1864(12): 3726-3734, 2018 12.
Article En | MEDLINE | ID: mdl-30318470

In this study we investigated the role of FRA1, a transcription factor from the AP-1 family, in the regulation of keratinocyte characteristics important for the development of psoriatic plaques. FRA1 is characterized by elevated expression in the skin of psoriasis patients, thus leading us to predict it to be one of the major regulators of keratinocyte phenotype during the development of psoriatic lesions. Pathway analysis of RNAseq data allowed us to identify FRA1-mediated signaling cascades leading to the manifestation of the most prominent skin characteristics of the disease: the development of inflammation, epithelial-mesenchymal transition, activation of metalloproteases, and keratinocyte proliferation and migration. We have confirmed that FRA1-overexpressing keratinocytes produce elevated amounts of proinflammatory cytokines and active matrix metalloproteases, leading to the induction of the autoinflammatory loop and paracrine activation in neighbor cells. Therefore, the elevated expression of FRA1 and its altered transcriptional regulation in the skin of patients with psoriasis is an important driving factor in the development of psoriatic plaques.


Keratinocytes/pathology , Proto-Oncogene Proteins c-fos/immunology , Psoriasis/pathology , Adult , Cell Line , Cell Movement , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Keratinocytes/immunology , Keratinocytes/metabolism , Male , Middle Aged , Proto-Oncogene Proteins c-fos/analysis , Proto-Oncogene Proteins c-fos/genetics , Psoriasis/genetics , Psoriasis/immunology , Up-Regulation , Wound Healing , Young Adult
11.
Molecules ; 23(4)2018 Apr 19.
Article En | MEDLINE | ID: mdl-29671793

The involvement of plant immunophilins in multiple essential processes such as development, various ways of adapting to biotic and abiotic stresses, and photosynthesis has already been established. Previously, research has demonstrated the involvement of three immunophilin genes (AtCYP19-1/ROC3, AtFKBP65/ROF2, and AtCYP57) in the control of plant response to invasion by various pathogens. Current research attempts to identify host target proteins for each of the selected immunophilins. As a result, candidate interactors have been determined and confirmed using a yeast 2-hybrid (Y2H) system for protein⁻protein interaction assays. The generation of mutant isoforms of ROC3 and AtCYP57 harboring substituted amino acids in the in silico-predicted active sites became essential to achieving significant binding to its target partners. This data shows that ROF2 targets calcium-dependent lipid-binding domain-containing protein (At1g70790; AT1) and putative protein phosphatase (At2g30020; АТ2), whereas ROC3 interacts with GTP-binding protein (At1g30580; ENGD-1) and RmlC-like cupin (At5g39120). The immunophilin AtCYP57 binds to putative pyruvate decarboxylase-1 (Pdc1) and clathrin adaptor complex-related protein (At5g05010). Identified interactors confirm our previous findings that immunophilins ROC3, ROF2, and AtCYP57 are directly involved with stress response control. Further, these findings extend our understanding of the molecular functional pathways of these immunophilins.


Arabidopsis/metabolism , Immunophilins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Immunophilins/genetics , Peptidylprolyl Isomerase/genetics , Peptidylprolyl Isomerase/metabolism , Plant Immunity/genetics , Plant Immunity/physiology , Plant Proteins/genetics , Plant Proteins/metabolism
12.
Cancer Genet ; 221: 46-52, 2018 02.
Article En | MEDLINE | ID: mdl-29405996

In Iran, esophageal cancer is the fourth common cancers in women and sixth common cancers in men. Here we evaluated the importance of familial risk factors and the role of genetic predisposition in Esophageal Squamous Cell Carcinoma (ESCC) using Whole-Exome Sequencing (WES). Germline damaging mutations were identified in WES data from 9 probands of 9 unrelated ESCC pedigrees. Mutations were confirmed with Sanger sequencing and evaluated amplification-refractory mutation system-Polymerase Chain Reaction (ARMS-PCR) in 50 non-related ethnically matched samples and in complete genomics database. Sixteen candidate variants were detected in ESCC 9 probands. Four of these 16 variants were rare damaging mutations including novel mutations in KCNJ12/KCNJ18, and GPRIN2 genes. This WES study in Iranian patients with ESCC, provides insight into the identification of novel germline mutations in familial ESCC. Our data suggest an association between specific mutations and increased risk of ESCC.


Carrier Proteins/genetics , Esophageal Squamous Cell Carcinoma/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Potassium Channels, Inwardly Rectifying/genetics , Carrier Proteins/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Female , Genetic Predisposition to Disease , Humans , Male , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Potassium Channels, Inwardly Rectifying/metabolism
13.
Methods Mol Biol ; 1613: 355-370, 2017.
Article En | MEDLINE | ID: mdl-28849568

Psoriasis is a common inflammatory skin disease with complex etiology and chronic progression. To provide novel insights into the molecular mechanisms of regulation of the disease we performed RNA sequencing (RNA-Seq) analysis of 14 pairs of skin samples collected from psoriatic patients. Subsequent pathway analysis and an extraction of transcriptional regulators governing psoriasis-associated pathways was executed using a combination of MetaCore Interactome enrichment tool and cisExpress algorithm, and followed by comparison to a set of previously described psoriasis response elements. A comparative approach has allowed us to identify 42 core transcriptional regulators of the disease associated with inflammation (NFkB, IRF9, JUN, FOS, SRF), activity of T-cells in the psoriatic lesions (STAT6, FOXP3, NFATC2, GATA3, TCF7, RUNX1, etc.), hyperproliferation and migration of keratinocytes (JUN, FOS, NFIB, TFAP2A, TFAP2C), and lipid metabolism (TFAP2, RARA, VDR). After merging the ChIP-seq and RNA-seq data, we conclude that the atypical expression of FOXA1 transcriptional factor is an important player in psoriasis, as it inhibits maturation of naive T cells into this Treg subpopulation (CD4+FOXA1+CD47+CD69+PD-L1(hi)FOXP3-), therefore contributing to the development of psoriatic skin lesions.


Gene Expression Profiling/methods , Hepatocyte Nuclear Factor 3-alpha/genetics , Psoriasis/genetics , Sequence Analysis, RNA/methods , Algorithms , Chromatin Immunoprecipitation , Gene Expression Regulation , Gene Regulatory Networks , Genetic Predisposition to Disease , Humans , T-Lymphocytes/immunology , T-Lymphocytes, Regulatory/immunology , Transcription, Genetic
14.
Exp Mol Med ; 48(11): e268, 2016 11 04.
Article En | MEDLINE | ID: mdl-27811935

Psoriasis is a common inflammatory skin disease with complex etiology and chronic progression. To provide novel insights into the regulatory molecular mechanisms of the disease, we performed RNA sequencing analysis of 14 pairs of skin samples collected from patients with psoriasis. Subsequent pathway analysis and extraction of the transcriptional regulators governing psoriasis-associated pathways was executed using a combination of the MetaCore Interactome enrichment tool and the cisExpress algorithm, followed by comparison to a set of previously described psoriasis response elements. A comparative approach allowed us to identify 42 core transcriptional regulators of the disease associated with inflammation (NFκB, IRF9, JUN, FOS, SRF), the activity of T cells in psoriatic lesions (STAT6, FOXP3, NFATC2, GATA3, TCF7, RUNX1), the hyperproliferation and migration of keratinocytes (JUN, FOS, NFIB, TFAP2A, TFAP2C) and lipid metabolism (TFAP2, RARA, VDR). In addition to the core regulators, we identified 38 transcription factors previously not associated with the disease that can clarify the pathogenesis of psoriasis. To illustrate these findings, we analyzed the regulatory role of one of the identified transcription factors (TFs), FOXA1. Using ChIP-seq and RNA-seq data, we concluded that the atypical expression of the FOXA1 TF is an important player in the disease as it inhibits the maturation of naive T cells into the (CD4+FOXA1+CD47+CD69+PD-L1(hi)FOXP3-) regulatory T cell subpopulation, therefore contributing to the development of psoriatic skin lesions.


Psoriasis/genetics , Transcription Factors/genetics , Transcriptional Activation , Transcriptome , Cell Movement , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism , Humans , Inflammation/genetics , Inflammation/metabolism , Keratinocytes/cytology , Keratinocytes/metabolism , Lipid Metabolism , Psoriasis/metabolism , Signal Transduction , Transcription Factors/metabolism
15.
Sci Rep ; 6: 35730, 2016 10 24.
Article En | MEDLINE | ID: mdl-27774999

We analyzed functionality and relative distribution of genetic variants across the complete Oryza sativa genome, using the 40 million single nucleotide polymorphisms (SNPs) dataset from the 3,000 Rice Genomes Project (http://snp-seek.irri.org), the largest and highest density SNP collection for any higher plant. We have shown that the DNA-binding transcription factors (TFs) are the most conserved group of genes, whereas kinases and membrane-localized transporters are the most variable ones. TFs may be conserved because they belong to some of the most connected regulatory hubs that modulate transcription of vast downstream gene networks, whereas signaling kinases and transporters need to adapt rapidly to changing environmental conditions. In general, the observed profound patterns of nucleotide variability reveal functionally important genomic regions. As expected, nucleotide diversity is much higher in intergenic regions than within gene bodies (regions spanning gene models), and protein-coding sequences are more conserved than untranslated gene regions. We have observed a sharp decline in nucleotide diversity that begins at about 250 nucleotides upstream of the transcription start and reaches minimal diversity exactly at the transcription start. We found the transcription termination sites to have remarkably symmetrical patterns of SNP density, implying presence of functional sites near transcription termination. Also, nucleotide diversity was significantly lower near 3' UTRs, the area rich with regulatory regions.


DNA, Intergenic/genetics , Genome, Plant/genetics , Nucleotides/genetics , Polymorphism, Single Nucleotide/genetics , 3' Untranslated Regions/genetics , Codon, Terminator/genetics , Gene Regulatory Networks , Genomics/methods , Oryza/genetics , Transcription, Genetic/genetics
16.
DNA Res ; 23(4): 295-310, 2016 Aug.
Article En | MEDLINE | ID: mdl-27436340

The term 'ancient DNA' (aDNA) is coming of age, with over 1,200 hits in the PubMed database, beginning in the early 1980s with the studies of 'molecular paleontology'. Rooted in cloning and limited sequencing of DNA from ancient remains during the pre-PCR era, the field has made incredible progress since the introduction of PCR and next-generation sequencing. Over the last decade, aDNA analysis ushered in a new era in genomics and became the method of choice for reconstructing the history of organisms, their biogeography, and migration routes, with applications in evolutionary biology, population genetics, archaeogenetics, paleo-epidemiology, and many other areas. This change was brought by development of new strategies for coping with the challenges in studying aDNA due to damage and fragmentation, scarce samples, significant historical gaps, and limited applicability of population genetics methods. In this review, we describe the state-of-the-art achievements in aDNA studies, with particular focus on human evolution and demographic history. We present the current experimental and theoretical procedures for handling and analysing highly degraded aDNA. We also review the challenges in the rapidly growing field of ancient epigenomics. Advancement of aDNA tools and methods signifies a new era in population genetics and evolutionary medicine research.


DNA, Ancient , Evolution, Molecular , Genetics, Population/methods , Genome, Human , Genomics/methods , Sequence Analysis, DNA/methods , Animals , Humans
17.
J Basic Microbiol ; 56(12): 1392-1397, 2016 Dec.
Article En | MEDLINE | ID: mdl-27400399

Here we present the results of the exploration of laccase multigene families (MGFs) in basidiomycetous fungi from different taxonomic groups using a next generation sequencing (NGS) technology. In our study, multiple laccase genes were identified in all of the investigated fungi (13 species) from Polyporaceae, Phanerochaetaceae, Meruliaceae, Pleurotaceae, Physalacriaceae, and Peniophoraceae families. It was shown that phylogenetic positioning of the newly identified sequences exhibit patterns of clusterization with respect to enzyme properties. This can be a potentially useful tool for selecting naturally existing laccases with different physicochemical characteristics relevant to different biotechnological applications. Moreover, the method developed in this study can be used in the screening of environmental samples and fast characterization of laccase MGFs in newly identified fungal species.


Basidiomycota/enzymology , Basidiomycota/genetics , Genes, Fungal , Laccase/genetics , Multigene Family , Basidiomycota/classification , Basidiomycota/growth & development , Evolution, Molecular , High-Throughput Nucleotide Sequencing/methods , Phylogeny
18.
Phytochemistry ; 117: 34-42, 2015 Sep.
Article En | MEDLINE | ID: mdl-26057227

Diacylglyceryltrimethylhomoserines (DGTS) are betaine-type lipids that are phosphate-free analogs of phosphatidylcholines (PC). DGTS are abundant in some bacteria, algae, primitive vascular plants and fungi. In this study, we report inorganic phosphate (Pi) deficiency-induced DGTS synthesis in the basidial fungus Flammulina velutipes (Curt.: Fr.) Sing. We present results of an expression analysis of the BTA1 gene that codes for betaine lipid synthase and two genes of PC biosynthesis (CHO2 and CPT1) during phosphate starvation of F. velutipes culture. We demonstrate that FvBTA1 gene has increased transcript abundance under phosphate starvation. Despite depletion in PC, both CHO2 and CPT1 were determined to have increased expression. We also describe the deduced amino acid sequence and genomic structure of the BTA1 gene in F. velutipes. Phylogenetic relationships between putative orthologs of BTA1 proteins of basidiomycete fungi are discussed.


Basidiomycota/metabolism , Flammulina/metabolism , Glycolipids/analysis , Mycelium/drug effects , Triglycerides/analysis , Amino Acid Sequence , Basidiomycota/chemistry , Basidiomycota/genetics , Gene Expression , Glycolipids/metabolism , Molecular Sequence Data , Phosphates/analysis , Phosphates/metabolism , Phosphatidylcholines/analysis , Phylogeny , Triglycerides/genetics
19.
Gene ; 540(1): 1-10, 2014 Apr 25.
Article En | MEDLINE | ID: mdl-24518811

This review summarizes the contribution of matrix metalloproteinases to the pathogenesis of psoriasis. In psoriasis, matrix metalloproteinases are involved in the structural changes of the epidermis via the modification of intracellular contacts and the composition of the extracellular matrix, promoting angiogenesis in the dermal blood vessels and the infiltration of immune cells. Moreover, some matrix metalloproteinases become differentially expressed during the disease eruption and their expression correlates with the clinical score. A separate section of the review is dedicated to the pharmacological approaches that are used to control matrix metalloproteinases, such as oral metalloproteinase inhibitors, such as azasugars and phosphonamides. The aim of this manuscript is to assess the role of matrix metalloproteinases in the physiological processes that accompany the disease. Moreover, it is especially important to evaluate progress in this field and characterize recently appeared medicines. Because any experimental drugs that target matrix metalloproteinases are involved in active clinical trials, this manuscript also reviews the latest experimental data regarding distribution and expression of matrix metalloproteinases in healthy skin and lesional skin. Therefore, the performed analysis highlights potential problems associated with the use of metalloproteinase inhibitors in clinical studies and suggests simple and easy understandable criteria that future innovative metalloproteinase inhibitors shall satisfy.


Matrix Metalloproteinases/physiology , Psoriasis/enzymology , ADAM Proteins/metabolism , Animals , Epidermis/enzymology , Epidermis/pathology , Humans , Matrix Metalloproteinase Inhibitors/pharmacology , Matrix Metalloproteinase Inhibitors/therapeutic use , Neovascularization, Pathologic/enzymology , Psoriasis/drug therapy , Psoriasis/pathology , Tissue Inhibitor of Metalloproteinases/metabolism
20.
Gene ; 538(1): 12-22, 2014 Mar 15.
Article En | MEDLINE | ID: mdl-24440291

Plant immunophilins are a broadly conserved family of proteins, which carry out a variety of cellular functions. In this study, we investigated three immunophilin genes involved in the Arabidopsis thaliana response to Pseudomonas syringae infection: a cytoplasmic localized AtCYP19, a cytoplasmic and nuclear localized AtCYP57, and one nucleus directed FKBP known as AtFKBP65. Arabidopsis knock-out mutations in these immunophilins result in an increased susceptibility to P. syringae, whereas overexpression of these genes alters the transcription profile of pathogen-related defense genes and led to enhanced resistance. Histochemical analysis revealed local gene expression of AtCYP19, AtCYP57, and AtFKBP65 in response to pathogen infection. AtCYP19 was shown to be involved in reactive oxygen species production, and both AtCYP57 and AtFKBP65 provided callose accumulation in plant cell wall. Identification of the involvement of these genes in biotic stress response brings a new set of data that will advance plant immune system research and can be widely used for further investigation in this area.


Arabidopsis Proteins/genetics , Arabidopsis/genetics , Aromatase/genetics , Plant Immunity/genetics , Tacrolimus Binding Proteins/genetics , Arabidopsis/metabolism , Arabidopsis/microbiology , Arabidopsis Proteins/metabolism , Aromatase/metabolism , Gene Expression Regulation, Plant , Glucans/genetics , Glucans/metabolism , Mutation , Pseudomonas syringae , Reactive Oxygen Species/metabolism , Stress, Physiological , Tacrolimus Binding Proteins/metabolism
...