Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Wildl Dis ; 60(2): 241-284, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38381612

ABSTRACT

The long-term mitigation of human-domestic animal-wildlife conflicts is complex and difficult. Over the last 50 yr, the primary biomedical concepts and actualized collaborative global field applications of oral rabies vaccination to wildlife serve as one dramatic example that revolutionized the field of infectious disease management of free-ranging animals. Oral vaccination of wildlife occurred in diverse locales within Africa, Eurasia, the Middle East, and North America. Although rabies is not a candidate for eradication, over a billion doses of vaccine-laden baits distributed strategically by hand, at baiting stations, or via aircraft, resulted in widespread disease prevention, control, or local disease elimination among mesocarnivores. Pure, potent, safe, and efficacious vaccines consisted of either modified-live, highly attenuated, or recombinant viruses contained within attractive, edible baits. Since the late 1970s, major free-ranging target species have included coyotes (Canis latrans), foxes (Urocyon cinereoargenteus; Vulpes vulpes), jackals (Canis aureus; Lupulella mesomelas), raccoons (Procyon lotor), raccoon dogs (Nyctereutes procyonoides), and skunks (Mephitis mephitis). Operational progress has occurred in all but the latter species. Programmatic evaluations of oral rabies vaccination success have included: demonstration of biomarkers incorporated within vaccine-laden baits in target species as representative of bait contact; serological measurement of the induction of specific rabies virus neutralizing antibodies, indicative of an immune response to vaccine; and most importantly, the decreasing detection of rabies virus antigens in the brains of collected animals via enhanced laboratory-based surveillance, as evidence of management impact. Although often conceived mistakenly as a panacea, such cost-effective technology applied to free-ranging wildlife represents a real-world, One Health application benefiting agriculture, conservation biology, and public health. Based upon lessons learned with oral rabies vaccination of mesocarnivores, opportunities for future extension to other taxa and additional diseases will have far-reaching, transdisciplinary benefits.


Subject(s)
Rabies Vaccines , Rabies , Animals , Humans , Rabies/prevention & control , Rabies/veterinary , Rabies/epidemiology , Animals, Wild , Mephitidae , Administration, Oral , Vaccination/veterinary , Vaccination/methods , Foxes , Raccoons
2.
J Wildl Dis ; 60(1): 26-38, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37924240

ABSTRACT

Raccoon rabies virus (RRV) has been managed using multiple vaccination strategies, including oral rabies vaccination and trap-vaccinate-release (TVR). Identifying a rabies vaccination strategy for an area is a nontrivial task. Vaccination strategies differ in the amount of effort and monetary costs required to achieve a particular level of vaccine seroprevalence (efficiency). Simulating host movement relative to different vaccination strategies in silico can provide a useful tool for exploring the efficiency of different vaccination strategies. We refined a previously developed individual-based model of raccoon movement to evaluate vaccination strategies for urban Hamilton, Ontario, Canada. We combined different oral rabies vaccination baiting (hand baiting, helicopter, and bait stations) with TVR strategies and used GPS data to parameterize and simulate raccoon movement in Hamilton. We developed a total of 560 vaccination strategies, in consultation with the Ontario Ministry of Natural Resources and Forestry, for RRV control in Hamilton. We documented the monetary costs of each vaccination strategy and estimated the population seroprevalence. Intervention costs and seroprevalence estimates were used to calculate the efficiency of each strategy to meet targets set for the purpose of RRV control. Estimated seroprevalence across different strategies varied widely, ranging from less than 5% to more than 70%. Increasing bait densities (distributed using by hand or helicopter) led to negligible increase in seroprevalence. Helicopter baiting was the most efficient and TVR was the least efficient, but helicopter-based strategies led to lower levels of seroprevalence (6-12%) than did TVR-based strategies (17-70%). Our simulations indicated that a mixed strategy including at least some TVR may be the most efficient strategy for a local urban RRV control program when seroprevalence levels >30% may be required. Our simulations provide information regarding the efficiency of different vaccination strategies for raccoon populations, to guide local RRV control in urban settings.


Subject(s)
Rabies Vaccines , Rabies virus , Rabies , Animals , Rabies/epidemiology , Rabies/prevention & control , Rabies/veterinary , Raccoons , Seroepidemiologic Studies , Administration, Oral , Vaccination/veterinary , Ontario/epidemiology
3.
iScience ; 26(11): 108319, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38026171

ABSTRACT

White-tailed deer (WTD) are susceptible to SARS-CoV-2 and represent an important species for surveillance. Samples from WTD (n = 258) collected in November 2021 from Québec, Canada were analyzed for SARS-CoV-2 RNA. We employed viral genomics and host transcriptomics to further characterize infection and investigate host response. We detected Delta SARS-CoV-2 (B.1.617.2) in WTD from the Estrie region; sequences clustered with human sequences from October 2021 from Vermont, USA, which borders this region. Mutations in the S-gene and a deletion in ORF8 were detected. Host expression patterns in SARS-CoV-2 infected WTD were associated with the innate immune response, including signaling pathways related to anti-viral, pro- and anti-inflammatory signaling, and host damage. We found limited correlation between genes associated with innate immune response from human and WTD nasal samples, suggesting differences in responses to SARS-CoV-2 infection. Our findings provide preliminary insights into host response to SARS-CoV-2 infection in naturally infected WTD.

4.
Viruses ; 15(2)2023 02 14.
Article in English | MEDLINE | ID: mdl-36851742

ABSTRACT

The largest outbreak of raccoon rabies in Canada was first reported in Hamilton, Ontario, in 2015 following a probable translocation event from the United States. We used a spatially-explicit agent-based model to evaluate the effectiveness of provincial control programs in an urban-centric outbreak if control interventions were used until 2025, 2020, or never used. Calibration tests suggested that a seroprevalence of protective rabies antibodies 2.1 times higher than that inferred from seroprevalence in program assessments was required in simulations to replicate observed raccoon rabies cases. Our simulation results showed that if control interventions with an adjusted seroprevalence were used until 2025 or 2020, the probability of rabies elimination due to control intervention use was 49.2% and 42.1%, respectively. However, if controls were never used, the probability that initial rabies cases failed to establish a sustained outbreak was only 18.2%. In simulations where rabies was not successfully eliminated, using control interventions until 2025 resulted in 67% fewer new infections compared to only applying controls until 2020 and in 90% fewer new infections compared to no control intervention use. However, the model likely underestimated rabies elimination rates since we did not adjust for adaptive control strategies in response to changes in rabies distributions and case numbers, as well as extending control interventions past 2025. Our agent-based model offers a cost-effective strategy to evaluate approaches to rabies control applications.


Subject(s)
Rabies , Raccoons , Animals , Ontario/epidemiology , Seroepidemiologic Studies , Antibodies , Computer Simulation , Rabies/epidemiology , Rabies/prevention & control
6.
Nat Microbiol ; 7(12): 2011-2024, 2022 12.
Article in English | MEDLINE | ID: mdl-36357713

ABSTRACT

Wildlife reservoirs of broad-host-range viruses have the potential to enable evolution of viral variants that can emerge to infect humans. In North America, there is phylogenomic evidence of continual transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to white-tailed deer (Odocoileus virginianus) through unknown means, but no evidence of transmission from deer to humans. We carried out an observational surveillance study in Ontario, Canada during November and December 2021 (n = 300 deer) and identified a highly divergent lineage of SARS-CoV-2 in white-tailed deer (B.1.641). This lineage is one of the most divergent SARS-CoV-2 lineages identified so far, with 76 mutations (including 37 previously associated with non-human mammalian hosts). From a set of five complete and two partial deer-derived viral genomes we applied phylogenomic, recombination, selection and mutation spectrum analyses, which provided evidence for evolution and transmission in deer and a shared ancestry with mink-derived virus. Our analysis also revealed an epidemiologically linked human infection. Taken together, our findings provide evidence for sustained evolution of SARS-CoV-2 in white-tailed deer and of deer-to-human transmission.


Subject(s)
COVID-19 , Deer , Animals , Humans , SARS-CoV-2/genetics
7.
Ecol Evol ; 12(4): e8798, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35475183

ABSTRACT

Chytridiomycosis, caused by the fungi Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans, is associated with massive amphibian mortality events worldwide and with some species' extinctions. Previous ecological niche models suggest that B. dendrobatidis is not well-suited to northern, temperate climates, but these predictions have often relied on datasets in which northern latitudes are underrepresented. Recent northern detections of B. dendrobatidis suggest that these models may have underestimated the suitability of higher latitudes for this fungus. We used qPCR to test for B. dendrobatidis in 1,041 non-invasive epithelial swab samples from 18 species of amphibians collected across 735,345 km2 in Ontario and Akimiski Island (Nunavut), Canada. We detected the pathogen in 113 samples (10.9%) from 11 species. Only one specimen exhibited potential clinical signs of disease. We used these data to produce six Species Distribution Models of B. dendrobatidis, which classified half of the study area as potential habitat for the fungus. We also tested each sample for B. salamandrivorans, an emerging pathogen that is causing alarming declines in European salamanders, but is not yet detected in North America. We did not detect B. salamandrivorans in any of the samples, providing a baseline for future surveillance. We assessed the potential risk of future introduction by comparing salamander richness to temperature-dependent mortality, predicted by a previous exposure study. Areas with the highest species diversity and predicted mortality risk extended 60,530 km2 across southern Ontario, highlighting the potential threat B. salamandrivorans poses to northern Nearctic amphibians. Preventing initial introduction will require coordinated, transboundary regulation of trade in amphibians (including frogs that can carry and disperse B. salamandrivorans), and surveillance of the pathways of introduction (e.g., water and wildlife). Our results can inform surveillance for both pathogens and efforts to mitigate the spread of chytridiomycosis through wild populations.

8.
Can Commun Dis Rep ; 48(6): 243-251, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-37333575

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for the coronavirus disease 2019 pandemic, is capable of infecting a variety of wildlife species. Wildlife living in close contact with humans are at an increased risk of SARS-CoV-2 exposure and, if infected, have the potential to become a reservoir for the pathogen, making control and management more difficult. The objective of this study is to conduct SARS-CoV-2 surveillance in urban wildlife from Ontario and Québec, increasing our knowledge of the epidemiology of the virus and our chances of detecting spillover from humans into wildlife. Methods: Using a One Health approach, we leveraged activities of existing research, surveillance and rehabilitation programs among multiple agencies to collect samples from 776 animals from 17 different wildlife species between June 2020 and May 2021. Samples from all animals were tested for the presence of SARS-CoV-2 viral ribonucleic acid, and a subset of samples from 219 animals across three species (raccoons, Procyon lotor; striped skunks, Mephitis mephitis; and mink, Neovison vison) were also tested for the presence of neutralizing antibodies. Results: No evidence of SARS-CoV-2 viral ribonucleic acid or neutralizing antibodies was detected in any of the tested samples. Conclusion: Although we were unable to identify positive SARS-CoV-2 cases in wildlife, continued research and surveillance activities are critical to better understand the rapidly changing landscape of susceptible animal species. Collaboration between academic, public and animal health sectors should include experts from relevant fields to build coordinated surveillance and response capacity.

9.
PLoS Negl Trop Dis ; 14(3): e0008113, 2020 03.
Article in English | MEDLINE | ID: mdl-32210439

ABSTRACT

Despite proactive measures to prevent raccoon rabies entering Canada from the United States, several incursions of this disease have occurred. The largest outbreak, first reported in December 2015 in the city of Hamilton, Ontario, has resulted in the reporting of 449 animal cases as of December 31, 2018. Initial phylogenetic studies on the index case suggested that this outbreak was not due to local cross-border spread from the Niagara region of the United States where raccoon rabies has persisted for several years. Phylogenetic analysis of whole genome sequences of a viral collection from the Hamilton area and several US states indicates that a long-distance translocation of a diseased animal from southeastern New York State was responsible for this incursion. The role of the skunk as a potential secondary host supporting persistence and / or spread of the virus is also examined.


Subject(s)
Animal Diseases/epidemiology , Communicable Diseases, Imported/epidemiology , Disease Outbreaks , Rabies/veterinary , Raccoons , Animal Diseases/virology , Animals , Communicable Diseases, Imported/virology , Genotype , New York , Ontario/epidemiology , Phylogeny , Rabies/epidemiology , Rabies/virology , Rabies virus/classification , Rabies virus/genetics , Rabies virus/isolation & purification , Whole Genome Sequencing
10.
J Wildl Dis ; 54(3): 622-625, 2018 07.
Article in English | MEDLINE | ID: mdl-29517402

ABSTRACT

Rabies and canine distemper virus infections in wildlife share similar presenting signs. Canine distemper virus was detected using real-time PCR of conjunctival swabs in rabies positive raccoons (22/32) and skunks (7/34) during a concurrent rabies and canine distemper outbreak in Ontario, Canada in 2015-16. Coinfections with both viruses should be considered, particularly in distemper endemic areas that are at risk of rabies incursion.


Subject(s)
Distemper Virus, Canine/isolation & purification , Distemper/complications , Mephitidae/virology , Rabies virus/isolation & purification , Rabies/veterinary , Raccoons/virology , Animals , Animals, Wild , Coinfection/epidemiology , Conjunctiva/virology , Disease Outbreaks , Distemper/epidemiology , Distemper/virology , Ontario/epidemiology , Rabies/complications , Rabies/epidemiology , Rabies/virology
11.
Trop Med Infect Dis ; 2(3)2017 Jun 30.
Article in English | MEDLINE | ID: mdl-30270880

ABSTRACT

Following an incursion of the mid-Atlantic raccoon variant of the rabies virus into southern Ontario, Canada, in late 2015, the direct rapid immunohistochemical test for rabies (dRIT) was employed on a large scale to establish the outbreak perimeter and to diagnose specific cases to inform rabies control management actions. In a 17-month period, 5800 wildlife carcasses were tested using the dRIT, of which 307 were identified as rabid. When compared with the gold standard fluorescent antibody test (FAT), the dRIT was found to have a sensitivity of 100% and a specificity of 98.2%. Positive and negative test agreement was shown to be 98.3% and 99.1%, respectively, with an overall test agreement of 98.8%. The average cost to test a sample was $3.13 CAD for materials, and hands-on technical time to complete the test is estimated at 0.55 h. The dRIT procedure was found to be accurate, fast, inexpensive, easy to learn and perform, and an excellent tool for monitoring the progression of a wildlife rabies incursion.

12.
J Wildl Dis ; 43(2): 242-50, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17495308

ABSTRACT

During 1996 to 1998, an average of 52% to 55% of the raccoon (Procyon lotor) population on Wolfe Island, Ontario was vaccinated against rabies during proactive trap-vaccinate-release (TVR) operations. However, during 1999, the percent of the population vaccinated declined to 39% and an outbreak (6 cases) of raccoon rabies occurred on the island from December 1999 to January 2000. The raccoon population on Wolfe Island declined dramatically (71% reduction) from 1,067 raccoons (mean density = 8.4/km(2) [6.4-12.4, 95% CI]) during 1999 to 305 raccoons (mean density = 2.4/km(2) [0.87-4.1, 95% CI]) in the spring of 2000. Raccoon density immediately following the outbreak was significantly lower in cells with rabies cases, suggesting that rabies had a negative effect on population size. However, raccoon density had doubled by 1 yr following the outbreak. Movement of raccoons on Wolfe Island was as great as 24 km. Male raccoons moved greater distances than females. Movements to surrounding islands were also noted for raccoons ear tagged on Wolfe Island which indicates the island could serve as a focus for greater geographic rabies spread. Point infection control (PIC) during 2000, TVR during 2001-02, and the aerial distribution of Vaccinia-Rabies Glycoprotein (V-RG) baits during 2000 and 2003-05 were used to eliminate rabies from Wolfe Island. No cases have been detected since late January 2000 (to February 2007).


Subject(s)
Rabies Vaccines/administration & dosage , Rabies/veterinary , Raccoons/virology , Animals , Animals, Wild/virology , Communicable Disease Control/methods , Disease Outbreaks/veterinary , Female , Immunization/veterinary , Male , Ontario/epidemiology , Population Density , Population Dynamics , Rabies/epidemiology , Rabies/mortality , Rabies/prevention & control
13.
J Wildl Dis ; 43(2): 300-1, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17495317

ABSTRACT

From 1999 to 2006, 132 cases of raccoon rabies, caused by the raccoon variant of rabies virus, were confirmed in eastern Ontario, Canada. Trap-vaccinate-release (TVR) and point infection control (PIC) programs were implemented to control the disease; 43,014 raccoons (Procyon lotor) were vaccinated against rabies by injection (Imrab3) during that period. Two vaccinated raccoons were diagnosed with rabies at 6 mo and at 2 wk postvaccination. One may have been due to a vaccination failure. The other was likely due to the animal being in the late stages of incubation for rabies at the time of vaccination. This information will be useful to wildlife rehabilitators and agencies that hold raccoons in captivity in that a vaccinated raccoon is not necessarily immune to rabies.


Subject(s)
Rabies Vaccines/administration & dosage , Rabies/veterinary , Raccoons/virology , Animals , Animals, Wild , Female , Injections/veterinary , Male , Ontario/epidemiology , Rabies/epidemiology , Rabies/prevention & control , Treatment Failure , Vaccination/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...