Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 33
1.
Orphanet J Rare Dis ; 19(1): 32, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38291488

Vertebral malformations (VMs) pose a significant global health problem, causing chronic pain and disability. Vertebral defects occur as isolated conditions or within the spectrum of various congenital disorders, such as Klippel-Feil syndrome, congenital scoliosis, spondylocostal dysostosis, sacral agenesis, and neural tube defects. Although both genetic abnormalities and environmental factors can contribute to abnormal vertebral development, our knowledge on molecular mechanisms of numerous VMs is still limited. Furthermore, there is a lack of resource that consolidates the current knowledge in this field. In this pioneering review, we provide a comprehensive analysis of the latest research on the molecular basis of VMs and the association of the VMs-related causative genes with bone developmental signaling pathways. Our study identifies 118 genes linked to VMs, with 98 genes involved in biological pathways crucial for the formation of the vertebral column. Overall, the review summarizes the current knowledge on VM genetics, and provides new insights into potential involvement of biological pathways in VM pathogenesis. We also present an overview of available data regarding the role of epigenetic and environmental factors in VMs. We identify areas where knowledge is lacking, such as precise molecular mechanisms in which specific genes contribute to the development of VMs. Finally, we propose future research avenues that could address knowledge gaps.


Abnormalities, Multiple , Hernia, Diaphragmatic , Klippel-Feil Syndrome , Scoliosis , Humans , Spine/abnormalities , Spine/pathology , Abnormalities, Multiple/pathology , Klippel-Feil Syndrome/pathology , Hernia, Diaphragmatic/pathology
2.
Pediatr Nephrol ; 39(6): 1847-1858, 2024 Jun.
Article En | MEDLINE | ID: mdl-38196016

BACKGROUND: We aimed to develop a tool for predicting HNF1B mutations in children with congenital abnormalities of the kidneys and urinary tract (CAKUT). METHODS: The clinical and laboratory data from 234 children and young adults with known HNF1B mutation status were collected and analyzed retrospectively. All subjects were randomly divided into a training (70%) and a validation set (30%). A random forest model was constructed to predict HNF1B mutations. The recursive feature elimination algorithm was used for feature selection for the model, and receiver operating characteristic curve statistics was used to verify its predictive effect. RESULTS: A total of 213 patients were analyzed, including HNF1B-positive (mut + , n = 109) and HNF1B-negative (mut - , n = 104) subjects. The majority of patients had mild chronic kidney disease. Kidney phenotype was similar between groups, but bilateral kidney anomalies were more frequent in the mut + group. Hypomagnesemia and hypermagnesuria were the most common abnormalities in mut + patients and were highly selective of HNF1B. Hypomagnesemia based on age-appropriate norms had a better discriminatory value than the age-independent cutoff of 0.7 mmol/l. Pancreatic anomalies were almost exclusively found in mut + patients. No subjects had hypokalemia; the mean serum potassium level was lower in the HNF1B cohort. The abovementioned, discriminative parameters were selected for the model, which showed a good performance (area under the curve: 0.85; sensitivity of 93.67%, specificity of 73.57%). A corresponding calculator was developed for use and validation. CONCLUSIONS: This study developed a simple tool for predicting HNF1B mutations in children and young adults with CAKUT.


Kidney Diseases , Urinary Tract , Urogenital Abnormalities , Vesico-Ureteral Reflux , Child , Humans , Young Adult , Retrospective Studies , Kidney/abnormalities , Urinary Tract/abnormalities , Mutation , Kidney Diseases/genetics , Magnesium , Hepatocyte Nuclear Factor 1-beta/genetics
3.
J Appl Genet ; 65(2): 287-301, 2024 May.
Article En | MEDLINE | ID: mdl-38180712

Chromatinopathies (CPs), a group of rare inborn defects characterized by chromatin state imbalance, have evolved from initially resembling Cornelia de Lange syndrome to encompass a wide array of genetic diseases with diverse clinical presentations. The CPs classification now includes human developmental disorders caused by germline mutations in epigenes, genes that regulate the epigenome. Recent advances in next-generation sequencing have enabled the association of 154 epigenes with CPs, revealing distinctive DNA methylation patterns known as episignatures.It has been shown that episignatures are unique for a particular CP or share similarities among specific CP subgroup. Consequently, these episignatures have emerged as promising biomarkers for diagnosing and treating CPs, differentiating subtypes, evaluating variants of unknown significance, and facilitating targeted therapies tailored to the underlying epigenetic dysregulation.The following review was conducted to collect, summarize, and analyze data regarding CPs in such aspects as clinical evaluation encompassing long-term patient care, underlying epigenetic changes, and innovative molecular and bioinformatic methodologies that have been devised for the assessment of CPs. We have also shed light on promising novel treatment options that have surfaced in recent research and presented a synthesis of ongoing clinical trials, contributing to the current understanding of the dynamic and evolving nature of CPs investigation.


DNA Methylation , Epigenesis, Genetic , Humans , DNA Methylation/genetics , Biomarkers
4.
J Appl Genet ; 64(3): 507-514, 2023 Sep.
Article En | MEDLINE | ID: mdl-37599337

Coenzyme Q5 (COQ5), a C-methyltransferase, modifies coenzyme Q10 (COQ10) during biosynthesis and interacts with polyA-tail regulating zinc-finger protein ZC3H14 in neural development. Here, we present a fifth patient (a third family) worldwide with neurodevelopmental and physiological symptoms including COQ10 deficiency. Our patient harbors one novel c.681+1G>A and one recurrent p.Gly118Ser variant within COQ5. The patient's mRNA profile reveals multiple COQ5 splice-variants. Subsequently, we comprehensively described patient's clinical features as compared to phenotype and symptoms of other known congenital coenzyme Q5-linked cases. A core spectrum of COQ5-associated symptoms includes reduced COQ10 levels, intellectual disability, encephalopathy, cerebellar ataxia, cerebellar atrophy speech regression/dysarthria, short stature, and developmental delays. Our patient additionally displays dysmorphia, microcephaly, and regressive social faculties. These results formally establish causal association of biallelic COQ5 mutation with pathology, outline a core COQ5-linked phenotype, and identify mRNA mis-splicing as the molecular mechanism underlying all COQ5 variant-linked pathology to date.


Intellectual Disability , Microcephaly , Humans , Intellectual Disability/genetics , Microcephaly/genetics
5.
Am J Med Genet A ; 191(1): 205-219, 2023 01.
Article En | MEDLINE | ID: mdl-36317839

Many unbalanced large copy number variants reviewed in the paper are associated with syndromic orofacial clefts, including a 1.6 Mb deletion on chromosome 3q29. The current report presents a new family with this recurrent deletion identified via whole-exome sequencing and confirmed by array comparative genomic hybridization. The proband exhibited a more severe clinical phenotype than his affected mother, comprising right-sided cleft lip/alveolus and cleft palate, advanced dental caries, heart defect, hypospadias, psychomotor, and speech delay, and an intellectual disability. Data analysis from the 3q29 registry revealed that the 3q29 deletion increases the risk of clefting by nearly 30-fold. No additional rare and pathogenic nucleotide variants were identified that could explain the clefting phenotype and observed intrafamilial phenotypic heterogeneity. These data suggest that the 3q29 deletion may be the primary risk factor for clefting, with additional genomic variants located outside the coding sequences, methylation changes, or environmental exposure serving as modifiers of this risk. Additional studies, including whole-genome sequencing or methylation analyses, should be performed to identify genetic factors underlying the phenotypic variation associated with the recurrent 3q29 deletion.


Cleft Lip , Cleft Palate , Dental Caries , Male , Humans , Cleft Lip/diagnosis , Cleft Lip/genetics , Cleft Palate/diagnosis , Cleft Palate/genetics , Exome Sequencing , Comparative Genomic Hybridization , Syndrome
6.
Eur J Med Genet ; 66(1): 104668, 2023 Jan.
Article En | MEDLINE | ID: mdl-36384198

Multiple congenital anomalies-hypotonia-seizures syndrome type 1 (MCAHS1) is a rare autosomal recessive genetic disease belonging to glycosylphosphatidylinositols biosynthesis defects (GPIBD), a group of recessive disorders characterized by intellectual disability, hypotonia, and seizures. Glycosylphosphatidylinositols (GPIs) are glycolipids that anchor and remodel cell proteins. These processes are highly conserved and fundamental in the metabolism of all eukaryotes, including humans. Here, we have reported a male patient presenting with hypotonia, intellectual disability, and epilepsy, who underwent whole exome sequencing (WES). The analysis revealed the presence of two deleterious variants in PIGN that encodes GPI ethanolamine phosphate transferase-1 - one novel (c.1247_1251delAAGTG; p.Glu416Glyfs*22), and one that has been previously reported in the medical literature (c.1434+5G>A) resulting in MCAHS1. The detailed clinical assessment followed by the medical literature review also pointed out transient macrosomia and unreported in MCAHS1 advanced bone age and postnatal tall stature. These symptoms suggest that MCAHS1 shares a phenotypic overlap with disorders associated with overgrowth. To conclude, our case report and summary of the medical literature may be helpful for clinicians and geneticists who diagnose patients presenting with hypotonia accompanied by tall stature, advanced bone age, and transient macrosomia.


Abnormalities, Multiple , Intellectual Disability , Female , Humans , Male , Intellectual Disability/genetics , Abnormalities, Multiple/genetics , Glycosylphosphatidylinositols , Muscle Hypotonia/genetics , Fetal Macrosomia , Phosphotransferases/genetics , Seizures/genetics , Syndrome , Pedigree , Mutation
7.
Orphanet J Rare Dis ; 17(1): 325, 2022 08 26.
Article En | MEDLINE | ID: mdl-36028842

BACKGROUND: Split-hand/ foot malformation with long bone deficiency 3 (SHFLD3) is an extremely rare condition associated with duplications located on 17p13.3, which invariably encompasses the BHLHA9 gene. The disease inherits with variable expressivity and significant incomplete penetrance as high as 50%. RESULTS: We have detected 17p13.3 locus one-allele triplication in a male proband from family 1 (F1.1), and duplication in a male proband from family 2 (F2.1) applying array comparative genomic hybridization (array CGH). The rearrangements mapped to the following chromosomal regions-arr[GRCh38] 17p13.3(960254-1291856)×4 in F1.1 and arr[GRCh38] 17p13.3(1227482-1302716)×3 in F2.1. The targeted quantitative PCR revealed that the 17p13.3 locus was also duplicated in the second affected member from family 2 (F2.2; brother of F2.1). In the next step, we performed segregation studies using quantitative PCR and revealed that F1.1 inherited the triplication from his healthy father-F1.2, whereas the locus was unremarkable in the mother of F2.1 & F2.2 and the healthy son of F2.1. However, the duplication was present in a healthy daughter of F2.2, an asymptomatic carrier. The breakpoint analysis allowed to define the exact size and span of the duplicated region in Family 2, i.e., 78,948 bp chr17:1225063-1304010 (HG38). Interestingly, all symptomatic carriers from both families presented with variable SHFLD3 phenotype. The involvement of secondary modifying locus could not be excluded, however, the Sanger sequencing screening of BHLHA9 entire coding sequence was unremarkable for both families. CONCLUSIONS: We have shed light on the one-allele CNV triplication occurrence that should be considered when a higher probe (over duplication range) signal is noted. Second, all SHFLD3 patients were accurately described regarding infrequent limb phenotypes, which were highly variable even when familial. Of note, all symptomatic individuals were males. SHFLD3 still remains a mysterious ultra-rare disease and our findings do not answer crucial questions regarding the disease low penetrance, variable expression and heterogeneity. However, we have presented some clinical and molecular aspects that may be helpful in daily diagnostic routine, both dysmorphological and molecular assessment, of patients affected with SHFLD3.


Basic Helix-Loop-Helix Transcription Factors , Limb Deformities, Congenital , Basic Helix-Loop-Helix Transcription Factors/genetics , Comparative Genomic Hybridization , Female , Gene Duplication , Humans , Limb Deformities, Congenital/genetics , Male , Phenotype
8.
Front Genet ; 13: 931822, 2022.
Article En | MEDLINE | ID: mdl-35873489

Ciliopathies are rare congenital disorders, caused by defects in the cilium, that cover a broad clinical spectrum. A subgroup of ciliopathies showing significant phenotypic overlap are known as skeletal ciliopathies and include Jeune asphyxiating thoracic dysplasia (JATD), Mainzer-Saldino syndrome (MZSDS), cranioectodermal dysplasia (CED), and short-rib polydactyly (SRP). Ciliopathies are heterogeneous disorders with >187 associated genes, of which some genes are described to cause more than one ciliopathy phenotype. Both the clinical and molecular overlap make accurate diagnosing of these disorders challenging. We describe two unrelated Polish patients presenting with a skeletal ciliopathy who share the same compound heterozygous variants in IFT140 (NM_014,714.4) r.2765_2768del; p.(Tyr923Leufs*28) and exon 27-30 duplication; p.(Tyr1152_Thr1394dup). Apart from overlapping clinical symptoms the patients also show phenotypic differences; patient 1 showed more resemblance to a Mainzer-Saldino syndrome (MZSDS) phenotype, while patient 2 was more similar to the phenotype of cranioectodermal dysplasia (CED). In addition, functional testing in patient-derived fibroblasts revealed a distinct cilium phenotyps for each patient, and strikingly, the cilium phenotype of CED-like patient 2 resembled that of known CED patients. Besides two variants in IFT140, in depth exome analysis of ciliopathy associated genes revealed a likely-pathogenic heterozygous variant in INTU for patient 2 that possibly affects the same IFT-A complex to which IFT140 belongs and thereby could add to the phenotype of patient 2. Taken together, by combining genetic data, functional test results, and clinical findings we were able to accurately diagnose patient 1 with "IFT140-related ciliopathy with MZSDS-like features" and patient 2 with "IFT140-related ciliopathy with CED-like features". This study emphasizes that identical variants in one ciliopathy associated gene can lead to a variable ciliopathy phenotype and that an in depth and integrated analysis of clinical, molecular and functional data is necessary to accurately diagnose ciliopathy patients.

9.
Mol Genet Genomics ; 297(5): 1343-1352, 2022 Sep.
Article En | MEDLINE | ID: mdl-35821352

Herein, we report on a large Polish family presenting with a classical triphalangeal thumb-polysyndactyly syndrome (TPT-PS). This rare congenital limb anomaly is generally caused by microduplications encompassing the Sonic Hedgehog (SHH) limb enhancer, termed the zone of polarizing activity (ZPA) regulatory sequence (ZRS). Recently, a pathogenic variant in the pre-ZRS (pZRS), a conserved sequence located near the ZRS, has been described in a TPT-PS Dutch family. We performed targeted ZRS sequencing, array comparative genomic hybridization, and whole-exome sequencing. Next, we sequenced the recently described pZRS region. Finally, we performed a circular chromatin conformation capture-sequencing (4C-seq) assay on skin fibroblasts of one affected family member and control samples to examine potential alterations in the SHH regulatory domain and functionally characterize the identified variant. We found that all affected individuals shared a recently identified pathogenic point mutation in the pZRS region: NC_000007.14:g.156792782C>G (GRCh38/hg38), which is the same as in the Dutch family. The results of 4C-seq experiments revealed increased interactions within the whole SHH regulatory domain (SHH-LMBR1 TAD) in the patient compared to controls. Our study expands the number of TPT-PS families carrying a pathogenic alteration of the pZRS and underlines the importance of routine pZRS sequencing in the genetic diagnostics of patients with TPT-PS or similar phenotypes. The pathogenic mutation causative for TPT-PS in our patient gave rise to increased interactions within the SHH regulatory domain in yet unknown mechanism.


Congenital Abnormalities , Hedgehog Proteins , Mandibulofacial Dysostosis , Polydactyly , Comparative Genomic Hybridization , Congenital Abnormalities/genetics , Enhancer Elements, Genetic , Hedgehog Proteins/genetics , Humans , Mandibulofacial Dysostosis/genetics , Mutation , Pedigree , Thumb
10.
Am J Med Genet A ; 188(10): 3071-3077, 2022 10.
Article En | MEDLINE | ID: mdl-35875935

Cranioectodermal dysplasia (CED) is rare heterogeneous condition. It belongs to a group of disorders defined as ciliopathies and is associated with defective cilia function and structure. To date six genes have been associated with CED. Here we describe a 4-year-old male CED patient whose features include dolichocephaly, multi-suture craniosynostosis, epicanthus, frontal bossing, narrow thorax, limb shortening, and brachydactyly. The patient presented early-onset chronic kidney disease and was transplanted at the age of 2 years and 5 months. At the age of 3.5 years a retinal degeneration was diagnosed. Targeted sequencing by NGS revealed the presence of compound heterozygous variants in the WDR35 gene. The variants are a novel missense change in exon 9 p.(Gly303Arg) and a previously described nonsense variant in exon 18 p.(Leu641*). Our findings suggest that patients with WDR35 defects may be at risk to develop early-onset retinal degeneration. Therefore, CED patients with pathogenic variation in this gene should be assessed at least once by the ophthalmologist before the age of 4 years to detect early signs of retinal degeneration.


Craniosynostoses , Kidney Failure, Chronic , Retinal Dystrophies , Bone and Bones/abnormalities , Child, Preschool , Craniosynostoses/complications , Craniosynostoses/diagnosis , Craniosynostoses/genetics , Cytoskeletal Proteins/genetics , Dwarfism , Ectodermal Dysplasia , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Mutation , Osteochondrodysplasias , Retinal Dystrophies/diagnosis , Retinal Dystrophies/genetics
11.
Front Mol Biosci ; 9: 865494, 2022.
Article En | MEDLINE | ID: mdl-35591945

Background: Craniosynostosis (CS) represents a highly heterogeneous genetic condition whose genetic background has not been yet revealed. The abnormality occurs either in isolated form or syndromic, as an element of hundreds of different inborn syndromes. Consequently, CS may often represent a challenging diagnostic issue. Methods: We investigated a three-tiered approach (karyotyping, Sanger sequencing, followed by custom gene panel/chromosomal microarray analysis, and exome sequencing), coupled with prioritization of variants based on dysmorphological assessment and description in terms of human phenotype ontology. In addition, we have also performed a statistical analysis of the obtained clinical data using the nonparametric test χ2. Results: We achieved a 43% diagnostic success rate and have demonstrated the complexity of mutations' type harbored by the patients, which were either chromosomal aberrations, copy number variations, or point mutations. The majority of pathogenic variants were found in the well-known CS genes, however, variants found in genes associated with chromatinopathies or RASopathies are of particular interest. Conclusion: We have critically summarized and then optimised a cost-effective diagnostic algorithm, which may be helpful in a daily diagnostic routine and future clinical research of various CS types. Moreover, we have pinpointed the possible underestimated co-occurrence of CS and intellectual disability, suggesting it may be overlooked when intellectual disability constitutes a primary clinical complaint. On the other hand, in any case of already detected syndromic CS and intellectual disability, the possible occurrence of clinical features suggestive for chromatinopathies or RASopathies should also be considered.

12.
Int J Mol Sci ; 23(2)2022 Jan 08.
Article En | MEDLINE | ID: mdl-35054877

Actin molecules are fundamental for embryonic structural and functional differentiation; γ-actin is specifically required for the maintenance and function of cytoskeletal structures in the ear, resulting in hearing. Baraitser-Winter Syndrome (B-WS, OMIM #243310, #614583) is a rare, multiple-anomaly genetic disorder caused by mutations in either cytoplasmically expressed actin gene, ACTB (ß-actin) or ACTG1 (γ-actin). The resulting actinopathies cause characteristic cerebrofrontofacial and developmental traits, including progressive sensorineural deafness. Both ACTG1-related non-syndromic A20/A26 deafness and B-WS diagnoses are characterized by hypervariable penetrance in phenotype. Here, we identify a 28th patient worldwide carrying a mutated γ-actin ACTG1 allele, with mildly manifested cerebrofrontofacial B-WS traits, hypervariable penetrance of developmental traits and sensorineural hearing loss. This patient also displays brachycephaly and a complete absence of speech faculty, previously unreported for ACTG1-related B-WS or DFNA20/26 deafness, representing phenotypic expansion. The patient's exome sequence analyses (ES) confirms a de novo ACTG1 variant previously unlinked to the pathology. Additional microarray analysis uncover no further mutational basis for dual molecular diagnosis in our patient. We conclude that γ-actin c.542C > T, p.Ala181Val is a dominant pathogenic variant, associated with mildly manifested facial and cerebral traits typical of B-WS, hypervariable penetrance of developmental traits and sensorineural deafness. We further posit and present argument and evidence suggesting ACTG1-related non-syndromic DFNA20/A26 deafness is a manifestation of undiagnosed ACTG1-related B-WS.


Actins/genetics , Deafness/genetics , Growth Disorders/genetics , Hydrocephalus/genetics , Mental Retardation, X-Linked/genetics , Mutation/genetics , Obesity/genetics , Adult , Algorithms , Base Sequence , Deafness/complications , Deafness/diagnostic imaging , Facies , Genotype , Growth Disorders/complications , Growth Disorders/diagnostic imaging , Humans , Hydrocephalus/complications , Hydrocephalus/diagnostic imaging , Magnetic Resonance Imaging , Mental Retardation, X-Linked/complications , Mental Retardation, X-Linked/diagnostic imaging , Obesity/complications , Obesity/diagnostic imaging , Pedigree , Phenotype
13.
Am J Med Genet A ; 188(2): 642-647, 2022 02.
Article En | MEDLINE | ID: mdl-34773354

Aniridia is usually an autosomal dominant, rare disorder characterized by a variable degree of hypoplasia or the absence of iris tissue, with additional ocular abnormalities. Pathogenic variants in the PAX6 gene are associated with aniridia in most patients. However, in up to 30% of individuals, disease results from 11p13 chromosomal rearrangements. Here we present a patient with a clinical diagnosis of partial aniridia born to consanguineous Polish parents. The parents were asymptomatic and ophthalmologically normal. We performed PAX6 sequencing, array comparative genomic hybridization, quantitative real-time PCR, and whole genome sequencing. aCGH revealed a homozygous deletion of the DCDC1 gene fragment in the patient. The same, but heterozygous deletion, was detected in each of the patient's asymptomatic parents and brother. In the presented family, the signs and symptoms of aniridia are observed only in the homozygous proband. Whole genome sequencing analysis was performed to determine other possible causes of the disease and did not detect any additional or alternative potentially pathogenic variant. We report a novel homozygous deletion located in the 11p13 region, which does not include the PAX6 gene or any known PAX6 enhancers. To our best knowledge, this is the first reported case of a patient presented with isolated aniridia carrying a homozygous microdeletion downstream of the PAX6 gene.


Aniridia , Eye Proteins , Aniridia/diagnosis , Aniridia/genetics , Comparative Genomic Hybridization , Eye Proteins/genetics , Homeodomain Proteins/genetics , Homozygote , Humans , Male , PAX6 Transcription Factor/genetics , Pedigree , Sequence Deletion
14.
Eur J Pediatr ; 181(4): 1371-1383, 2022 Apr.
Article En | MEDLINE | ID: mdl-34939152

Common variable immunodeficiency (CVID) is the most prevalent antibody deficiency, characterized by remarkable genetic, immunological, and clinical heterogeneity. The diagnosis of pediatric CVID is challenging due to the immaturity of the immune response and sustained actively developing antibody affinity to antigens and immunological memory that may overlap with the inborn error of immunity. Significant progress has been recently done in the field of immunogenetics, yet a paucity of experimental and clinical studies on different systemic manifestations and immunological features of CVID in children may contribute to a delayed diagnosis and therapy. In this review, we aimed at defining the variable epidemiological, etiological, and clinical aspects of pediatric CVID with special emphasis on predominating infectious and non-infectious phenotypes in affected children. CONCLUSION: While pediatric CVID is a multifaceted and notorious disease, increasing the pediatricians' awareness of this disease entity and preventing the diagnostic and therapeutic delay are needed, thereby improving the prognosis and survival of pediatric CVID patients. WHAT IS KNOWN: • CVID is an umbrella diagnosis characterized by complex pathophysiology with an antibody deficiency as a common denominator. • It is a multifaceted disease characterized by marked genetic, immunological, and clinical heterogeneity.. WHAT IS NEW: • The diagnosis of pediatric CVID is challenging due to the immaturity of innate and adaptive immune response. • Increasing the pediatricians' awareness of CVID for the early disease recognition, timely therapeutic intervention, and improving the prognosis is needed.


Common Variable Immunodeficiency , Primary Immunodeficiency Diseases , Autoimmunity , Child , Common Variable Immunodeficiency/diagnosis , Common Variable Immunodeficiency/genetics , Common Variable Immunodeficiency/therapy , Humans , Phenotype
15.
Genes (Basel) ; 12(12)2021 12 18.
Article En | MEDLINE | ID: mdl-34946966

Congenital microcephaly causes smaller than average head circumference relative to age, sex and ethnicity and is most usually associated with a variety of neurodevelopmental disorders. The underlying etiology is highly heterogeneous and can be either environmental or genetic. Disruption of any one of multiple biological processes, such as those underlying neurogenesis, cell cycle and division, DNA repair or transcription regulation, can result in microcephaly. This etiological heterogeneity manifests in a clinical variability and presents a major diagnostic and therapeutic challenge, leaving an unacceptably large proportion of over half of microcephaly patients without molecular diagnosis. To elucidate the clinical and genetic landscapes of congenital microcephaly, we sequenced the exomes of 191 clinically diagnosed patients with microcephaly as one of the features. We established a molecular basis for microcephaly in 71 patients (37%), and detected novel variants in five high confidence candidate genes previously unassociated with this condition. We report a large number of patients with mutations in tubulin-related genes in our cohort as well as higher incidence of pathogenic mutations in MCPH genes. Our study expands the phenotypic and genetic landscape of microcephaly, facilitating differential clinical diagnoses for disorders associated with most commonly disrupted genes in our cohort.


Exome Sequencing/methods , Gene Regulatory Networks , Microcephaly/genetics , Mutation , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Microcephaly/diagnostic imaging , Pedigree , Sequence Analysis, DNA
16.
Front Genet ; 12: 759129, 2021.
Article En | MEDLINE | ID: mdl-34956317

Hereditary multiple exostoses (HMEs) syndrome, also known as multiple osteochondromas, represents a rare and severe human skeletal disorder. The disease is characterized by multiple benign cartilage-capped bony outgrowths, termed exostoses or osteochondromas, that locate most commonly in the juxta-epiphyseal portions of long bones. Affected individuals usually complain of persistent pain caused by the pressure on neighboring tissues, disturbance of blood circulation, or rarely by spinal cord compression. However, the most severe complication of this condition is malignant transformation into chondrosarcoma, occurring in up to 3.9% of HMEs patients. The disease results mainly from heterozygous loss-of-function alterations in the EXT1 or EXT2 genes, encoding Golgi-associated glycosyltransferases, responsible for heparan sulfate biosynthesis. Some of the patients with HMEs do not carry pathogenic variants in those genes, hence the presence of somatic mutations, deep intronic variants, or another genes/loci is suggested. This review presents the systematic analysis of current cellular and molecular concepts of HMEs along with clinical characteristics, clinical and molecular diagnostic methods, differential diagnosis, and potential treatment options.

17.
Am J Hum Genet ; 108(9): 1725-1734, 2021 09 02.
Article En | MEDLINE | ID: mdl-34433009

Copy-number variations (CNVs) are a common cause of congenital limb malformations and are interpreted primarily on the basis of their effect on gene dosage. However, recent studies show that CNVs also influence the 3D genome chromatin organization. The functional interpretation of whether a phenotype is the result of gene dosage or a regulatory position effect remains challenging. Here, we report on two unrelated families with individuals affected by bilateral hypoplasia of the femoral bones, both harboring de novo duplications on chromosome 10q24.32. The ∼0.5 Mb duplications include FGF8, a key regulator of limb development and several limb enhancer elements. To functionally characterize these variants, we analyzed the local chromatin architecture in the affected individuals' cells and re-engineered the duplications in mice by using CRISPR-Cas9 genome editing. We found that the duplications were associated with ectopic chromatin contacts and increased FGF8 expression. Transgenic mice carrying the heterozygous tandem duplication including Fgf8 exhibited proximal shortening of the limbs, resembling the human phenotype. To evaluate whether the phenotype was a result of gene dosage, we generated another transgenic mice line, carrying the duplication on one allele and a concurrent Fgf8 deletion on the other allele, as a control. Surprisingly, the same malformations were observed. Capture Hi-C experiments revealed ectopic interaction with the duplicated region and Fgf8, indicating a position effect. In summary, we show that duplications at the FGF8 locus are associated with femoral hypoplasia and that the phenotype is most likely the result of position effects altering FGF8 expression rather than gene dosage effects.


Chromosome Duplication , Chromosomes, Human, Pair 10/chemistry , DNA Copy Number Variations , Fibroblast Growth Factor 8/genetics , Lower Extremity Deformities, Congenital/genetics , Adolescent , Alleles , Animals , CRISPR-Cas Systems , Child, Preschool , Chromatin/chemistry , Chromatin/metabolism , Chromosomes, Human, Pair 10/metabolism , Enhancer Elements, Genetic , Family , Female , Femur/abnormalities , Femur/diagnostic imaging , Femur/metabolism , Fibroblast Growth Factor 8/metabolism , Gene Editing , Heterozygote , Humans , Infant , Lower Extremity Deformities, Congenital/diagnostic imaging , Lower Extremity Deformities, Congenital/metabolism , Lower Extremity Deformities, Congenital/pathology , Male , Mice , Mice, Transgenic , Pedigree , Phenotype
18.
Front Genet ; 12: 692978, 2021.
Article En | MEDLINE | ID: mdl-34306033

Osteogenesis imperfecta (OI) is a rare genetic disorder demonstrating considerable phenotypic and genetic heterogeneity. The extensively studied genotype-phenotype correlation is a crucial issue for a reliable counseling, as the disease is recognized at increasingly earlier stages of life, including prenatal period. Based on population studies, clusters in COL1A1 and COL1A2 genes associated with the presence of glycine substitutions leading to fatal outcome have been distinguished and named as "lethal regions." Their localization corresponds to the ligand-binding sites responsible for extracellular interactions of collagen molecules, which could explain high mortality associated with mutations mapping to these regions. Although a number of non-lethal cases have been identified from the variants located in lethal clusters, the mortality rate of mutations has not been updated. An next generation sequencing analysis, using a custom gene panel of known and candidate OI genes, was performed on a group of 166 OI patients and revealed seven individuals with a causative mutations located in the lethal regions. Patients' age, ranging between 3 and 25 years, excluded the expected fatal outcome. The identification of non-lethal cases caused by mutations located in lethal domains prompted us to determine the actual mortality caused by glycine substitutions mapping to lethal clusters and evaluate the distribution of all lethal glycine mutations across collagen type I genes, based on records deposited in the OI Variant Database. Finally, we identified six glycine substitutions located in lethal regions of COL1A1 and COL1A2 genes, of which four are novel. The review of all mutations in the dedicated OI database, revealed 33 distinct glycine substitutions in two lethal domains of COL1A1, 26 of which have been associated with a fatal outcome. Similarly, 109 glycine substitutions have been identified in eight lethal clusters of COL1A2, of which 51 have been associated with a fatal manifestation. An analysis of all glycine substitutions leading to fatal phenotype, showed that their distribution along collagen type I genes is not regular, with 17% (26 out of 154) of mutations reported in COL1A1 and 64% (51 out of 80) in COL1A2 corresponding to localization of the lethal regions.

19.
Orphanet J Rare Dis ; 16(1): 286, 2021 06 26.
Article En | MEDLINE | ID: mdl-34174922

BACKGROUND: Craniofrontonasal syndrome (CFNS) is a rare X-linked disorder that results from pathogenic variants in the EFNB1 gene. The syndrome paradoxically presents with greater severity of the symptoms in heterozygous females than hemizygous males. RESULTS: We have recruited and screened a female cohort affected with CFNS. Our primary finding was the description of monozygotic twins, i.e., patients 5 and 6, discordant for the CFNS phenotype. Intriguingly, patient 5 presented classical CFNS gestalt, whereas patient 6 manifested only very subtle craniofacial features, not resembling CFNS. Besides, we have expanded the mutational spectrum of the EFNB1 gene through reporting four novel pathogenic variants-p.(Trp12*), p.(Cys64Phe), p.(Tyr73Metfs*86), p.(Glu210*). All those alterations were found applying either targeted NGS of a custom gene panel or PCR followed by Sanger sequencing and evaluated using in silico predictors. Lastly, we have also expanded the CFNS phenotypic spectrum by describing in patient 3 several novel features of the syndrome, such as bifid hallux, bicornuate uterus, and abnormal right ovary segmented into six parts. CONCLUSIONS: We have described the unreported so far differences of the clinical phenotype in the monozygotic twin patients 5 and 6 harboring an identical p.(Glu210*) variant located in the EFNB1 gene. With our finding, we have pointed to an unusual phenomenon of mildly affected females with CFNS, who may not manifest features suggestive of the syndrome. Consequently, this study may be valuable for geneticists consulting patients with craniofacial disorders.


Craniofacial Abnormalities , Ephrin-B1 , Craniofacial Abnormalities/genetics , Ephrin-B1/genetics , Female , Heterozygote , Humans , Male , Mutation/genetics
20.
World J Biol Psychiatry ; 22(10): 744-756, 2021 12.
Article En | MEDLINE | ID: mdl-33821765

OBJECTIVES: A significant challenge in psychiatry is the differential diagnosis of depressive episodes in the course of mood disorders. Gene expression profiling may provide an opportunity for such distinguishment. METHODS: We studied differentially expressed genes in women with a depressive episode in the course of unipolar depression (UD) (n = 24) and bipolar disorder types I (BDI) (n = 13) and II (BDII) (n = 19), and healthy controls (n = 15). RESULTS: Different types of depression varied in the number and type of up or down-regulated genes. The pathway analysis showed: in UD, up-regulated rheumatoid arthritis pathway (including ITGB2, CXCL8, TEK, TLR4 genes), and down-regulated taste transduction pathway (TAS2R10, TAS2R46, TAS2R14, TAS2R43, TAS2R45, TAS2R19, TAS2R13, TAS2R20, GNG13); in BDI, eight down-regulated pathways: glutamatergic synapse, retrograde endocannabinoid signalling, axon guidance, calcium signalling, nicotine addiction, PI3K-Akt signalling, drug metabolism - cytochrome P450, and morphine addiction; in BDII, up-regulated osteoclast differentiation and Notch signalling pathway, and down-regulated type I diabetes mellitus pathway. Distinct expression markers analysis uncovered the unique for UD, up-regulated bladder cancer pathway (HBEGF and CXCL8 genes). CONCLUSIONS: This pilot study suggests a probability of differentiating depression in the course of UD, BDI, and II, based on transcriptomic profiling.


Bipolar Disorder , Biomarkers , Bipolar Disorder/genetics , Depression , Female , Gene Expression Profiling , Humans , Phosphatidylinositol 3-Kinases , Pilot Projects , Transcriptome
...