Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 219
Filter
1.
bioRxiv ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38915588

ABSTRACT

ECHS1 Deficiency (ECHS1D) is a rare and devastating pediatric disease that currently has no defined treatments. This disorder results from missense loss-of-function mutations in the ECHS1 gene that result in severe developmental delays, encephalopathy, hypotonia, and early death. ECHS1 enzymatic activity is necessary for the beta-oxidation of fatty acids and the oxidation of branched-chain amino acids within the inner mitochondrial matrix. The pathogenesis of disease remains unknown, however it is hypothesized that disease is driven by an accumulation of toxic metabolites from impaired valine oxidation. To expand our knowledge on disease mechanisms, a novel mouse model of ECHS1D was generated that possesses a disease-associated knock-in (KI) allele and a knock-out (KO) allele. To investigate the behavioral phenotype, a battery of testing was performed at multiple time points, which included assessments of learning, motor function, endurance, sensory responses, and anxiety. Neurological abnormalities were assessed using wireless telemetry EEG recordings, pentylenetetrazol (PTZ) seizure induction, and immunohistochemistry. Metabolic perturbations were measured within the liver, serum, and brain using mass spectrometry and magnetic resonance spectroscopy. To test disease mechanisms, mice were subjected to disease pathway stressors and then survival, body weight gain, and epilepsy were assessed. Mice containing KI/KI or KI/KO alleles were viable with normal development and survival, and the presence of KI and KO alleles resulted in a significant reduction in ECHS1 protein. ECHS1D mice displayed reduced exercise capacity and pain sensation. EEG analysis revealed increased slow wave power that was associated with perturbations in sleep. ECHS1D mice had significantly increased epileptiform EEG discharges, and were sensitive to seizure induction, which resulted in death of 60% of ECHS1D mice. Under basal conditions, brain structure was grossly normal, although histological analysis revealed increased microglial activation in aged ECHS1D mice. Increased dietary valine only affected ECHS1D mice, which significantly exacerbated seizure susceptibility and resulted in death. Lastly, acute inflammatory challenge drove regression and early lethality in ECHS1D mice. In conclusion, we developed a novel model of ECHS1D that may be used to further knowledge on disease mechanisms and to develop therapeutics. Our data suggests altered metabolic signaling and inflammation may contribute to epilepsy in ECHS1D, and these alterations may be attributed to impaired valine metabolism.

2.
Mol Metab ; 86: 101967, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876267

ABSTRACT

OBJECTIVE: In response to bacterial inflammation, anorexia of acute illness is protective and is associated with the induction of fasting metabolic programs such as ketogenesis. Forced feeding during the anorectic period induced by bacterial inflammation is associated with suppressed ketogenesis and increased mortality. As ketogenesis is considered essential in fasting adaptation, we sought to determine the role of ketogenesis in illness-induced anorexia. METHODS: A mouse model of inducible hepatic specific deletion of the rate limiting enzyme for ketogenesis (HMG-CoA synthase 2, Hmgcs2) was used to investigate the role of ketogenesis in endotoxemia, a model of bacterial inflammation, and in prolonged starvation. RESULTS: Mice deficient of hepatic Hmgcs2 failed to develop ketosis during endotoxemia and during prolonged fasting. Surprisingly, hepatic HMGCS2 deficiency and the lack of ketosis did not affect survival, glycemia, or body temperature in response to endotoxemia. Mice with hepatic ketogenic deficiency also did not exhibit any defects in starvation adaptation and were able to maintain blood glucose, body temperature, and lean mass compared to littermate wild-type controls. Mice with hepatic HMGCS2 deficiency exhibited higher levels of plasma acetate levels in response to fasting. CONCLUSIONS: Circulating hepatic-derived ketones do not provide protection against endotoxemia, suggesting that alternative mechanisms drive the increased mortality from forced feeding during illness-induced anorexia. Hepatic ketones are also dispensable for surviving prolonged starvation in the absence of inflammation. Our study challenges the notion that hepatic ketogenesis is required to maintain blood glucose and preserve lean mass during starvation, raising the possibility of extrahepatic ketogenesis and use of alternative fuels as potential means of metabolic compensation.

3.
J Biol Chem ; 300(7): 107412, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38796064

ABSTRACT

The heart alters the rate and relative oxidation of fatty acids and glucose based on availability and energetic demand. Insulin plays a crucial role in this process diminishing fatty acid and increasing glucose oxidation when glucose availability increases. Loss of insulin sensitivity and metabolic flexibility can result in cardiovascular disease. It is therefore important to identify mechanisms by which insulin regulates substrate utilization in the heart. Mitochondrial pyruvate dehydrogenase (PDH) is the key regulatory site for the oxidation of glucose for ATP production. Nevertheless, the impact of insulin on PDH activity has not been fully delineated, particularly in the heart. We sought in vivo evidence that insulin stimulates cardiac PDH and that this process is driven by the inhibition of fatty acid oxidation. Mice injected with insulin exhibited dephosphorylation and activation of cardiac PDH. This was accompanied by an increase in the content of malonyl-CoA, an inhibitor of carnitine palmitoyltransferase 1 (CPT1), and, thus, mitochondrial import of fatty acids. Administration of the CPT1 inhibitor oxfenicine was sufficient to activate PDH. Malonyl-CoA is produced by acetyl-CoA carboxylase (ACC). Pharmacologic inhibition or knockout of cardiac ACC diminished insulin-dependent production of malonyl-CoA and activation of PDH. Finally, circulating insulin and cardiac glucose utilization exhibit daily rhythms reflective of nutritional status. We demonstrate that time-of-day-dependent changes in PDH activity are mediated, in part, by ACC-dependent production of malonyl-CoA. Thus, by inhibiting fatty acid oxidation, insulin reciprocally activates PDH. These studies identify potential molecular targets to promote cardiac glucose oxidation and treat heart disease.

4.
Sci Data ; 11(1): 540, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796485

ABSTRACT

Amongst fishes, zebrafish (Danio rerio) has gained popularity as a model system over most other species and while their value as a model is well documented, their usefulness is limited in certain fields of research such as behavior. By embracing other, less conventional experimental organisms, opportunities arise to gain broader insights into evolution and development, as well as studying behavioral aspects not available in current popular model systems. The anabantoid paradise fish (Macropodus opercularis), an "air-breather" species has a highly complex behavioral repertoire and has been the subject of many ethological investigations but lacks genomic resources. Here we report the reference genome assembly of M. opercularis using long-read sequences at 150-fold coverage. The final assembly consisted of 483,077,705 base pairs (~483 Mb) on 152 contigs. Within the assembled genome we identified and annotated 20,157 protein coding genes and assigned ~90% of them to orthogroups.


Subject(s)
Fishes , Genome , Animals , Fishes/genetics
5.
Cell Metab ; 36(5): 1088-1104.e12, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38447582

ABSTRACT

Acetyl-CoA carboxylase (ACC) promotes prandial liver metabolism by producing malonyl-CoA, a substrate for de novo lipogenesis and an inhibitor of CPT-1-mediated fat oxidation. We report that inhibition of ACC also produces unexpected secondary effects on metabolism. Liver-specific double ACC1/2 knockout (LDKO) or pharmacologic inhibition of ACC increased anaplerosis, tricarboxylic acid (TCA) cycle intermediates, and gluconeogenesis by activating hepatic CPT-1 and pyruvate carboxylase flux in the fed state. Fasting should have marginalized the role of ACC, but LDKO mice maintained elevated TCA cycle intermediates and preserved glycemia during fasting. These effects were accompanied by a compensatory induction of proteolysis and increased amino acid supply for gluconeogenesis, which was offset by increased protein synthesis during feeding. Such adaptations may be related to Nrf2 activity, which was induced by ACC inhibition and correlated with fasting amino acids. The findings reveal unexpected roles for malonyl-CoA synthesis in liver and provide insight into the broader effects of pharmacologic ACC inhibition.


Subject(s)
Acetyl-CoA Carboxylase , Amino Acids , Gluconeogenesis , Liver , Malonyl Coenzyme A , Mice, Knockout , Oxidation-Reduction , Animals , Malonyl Coenzyme A/metabolism , Liver/metabolism , Acetyl-CoA Carboxylase/metabolism , Mice , Amino Acids/metabolism , Male , Pyruvate Carboxylase/metabolism , Citric Acid Cycle , Pyruvic Acid/metabolism , Mice, Inbred C57BL , Fasting/metabolism , Carnitine O-Palmitoyltransferase/metabolism
6.
Mol Neurobiol ; 61(3): 1753-1768, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37775721

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) is essential for neural development and regeneration as a key transcription factor and mitochondrial activator. However, the mechanism of Stat3 in axon development and regeneration has not been fully understood. In this study, using zebrafish posterior lateral line (PLL) axons, we demonstrate that Stat3 plays distinct roles in PLL axon embryonic growth and regeneration. Our experiments indicate that stat3 is required for PLL axon extension. In stat3 mutant zebrafish, the PLL axon ends were stalled at the level of the cloaca, and expression of stat3 rescues the PLL axon growth in a cell-autonomous manner. Jak/Stat signaling inhibition did not affect PLL axon growth indicating Jak/Stat was dispensable for PLL axon growth. In addition, we found that Stat3 was co-localized with mitochondria in PLL axons and important for the mitochondrial membrane potential and ATPase activity. The PLL axon growth defect of stat3 mutants was mimicked and rescued by rotenone and DCHC treatment, respectively, which suggests that Stat3 regulates PLL axon growth through mitochondrial Stat3. By contrast, mutation of stat3 or Jak/Stat signaling inhibition retarded PLL axon regeneration. Meanwhile, we also found Schwann cell migration was also inhibited in stat3 mutants. Taken together, Stat3 is required for embryonic PLL axon growth by regulating the ATP synthesis efficiency of mitochondria, whereas Stat3 stimulates PLL axon regeneration by regulating Schwann cell migration via Jak/Stat signaling. Our findings show a new mechanism of Stat3 in axon growth and regeneration.


Subject(s)
Axons , Zebrafish , Animals , Axons/metabolism , Nerve Regeneration/physiology , Signal Transduction/physiology , STAT3 Transcription Factor/metabolism , Zebrafish/metabolism
7.
iScience ; 26(11): 108196, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37942005

ABSTRACT

The liver coordinates the systemic response to nutrient deprivation and availability by producing glucose from gluconeogenesis during fasting and synthesizing lipids via de novo lipogenesis (DNL) when carbohydrates are abundant. Mitochondrial pyruvate metabolism is thought to play important roles in both gluconeogenesis and DNL. We examined the effects of hepatocyte-specific mitochondrial pyruvate carrier (MPC) deletion on the fasting-refeeding response. Rates of DNL during refeeding were impaired by hepatocyte MPC deletion, but this did not reduce intrahepatic lipid content. During fasting, glycerol is converted to glucose by two pathways; a direct cytosolic pathway and an indirect mitochondrial pathway requiring the MPC. Hepatocyte MPC deletion reduced the incorporation of 13C-glycerol into TCA cycle metabolites, but not into new glucose. Furthermore, suppression of glycerol and alanine metabolism did not affect glucose concentrations in fasted hepatocyte-specific MPC-deficient mice, suggesting multiple layers of redundancy in glycemic control in mice.

8.
Nat Commun ; 14(1): 6531, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848446

ABSTRACT

Adiponectin is a secretory protein, primarily produced in adipocytes. However, low but detectable expression of adiponectin can be observed in cell types beyond adipocytes, particularly in kidney tubular cells, but its local renal role is unknown. We assessed the impact of renal adiponectin by utilizing male inducible kidney tubular cell-specific adiponectin overexpression or knockout mice. Kidney-specific adiponectin overexpression induces a doubling of phosphoenolpyruvate carboxylase expression and enhanced pyruvate-mediated glucose production, tricarboxylic acid cycle intermediates and an upregulation of fatty acid oxidation (FAO). Inhibition of FAO reduces the adiponectin-induced enhancement of glucose production, highlighting the role of FAO in the induction of renal gluconeogenesis. In contrast, mice lacking adiponectin in the kidney exhibit enhanced glucose tolerance, lower utilization and greater accumulation of lipid species. Hence, renal adiponectin is an inducer of gluconeogenesis by driving enhanced local FAO and further underlines the important systemic contribution of renal gluconeogenesis.


Subject(s)
Adiponectin , Gluconeogenesis , Kidney , Animals , Male , Mice , Adiponectin/genetics , Adiponectin/metabolism , Gluconeogenesis/genetics , Gluconeogenesis/physiology , Glucose/metabolism , Kidney/metabolism , Liver/metabolism , Mice, Knockout , Pyruvic Acid/metabolism
9.
Nat Commun ; 14(1): 6628, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37857613

ABSTRACT

Sharks occupy diverse ecological niches and play critical roles in marine ecosystems, often acting as apex predators. They are considered a slow-evolving lineage and have been suggested to exhibit exceptionally low cancer rates. These two features could be explained by a low nuclear mutation rate. Here, we provide a direct estimate of the nuclear mutation rate in the epaulette shark (Hemiscyllium ocellatum). We generate a high-quality reference genome, and resequence the whole genomes of parents and nine offspring to detect de novo mutations. Using stringent criteria, we estimate a mutation rate of 7×10-10 per base pair, per generation. This represents one of the lowest directly estimated mutation rates for any vertebrate clade, indicating that this basal vertebrate group is indeed a slowly evolving lineage whose ability to restore genetic diversity following a sustained population bottleneck may be hampered by a low mutation rate.


Subject(s)
Mutation Rate , Sharks , Animals , Sharks/genetics , Ecosystem
10.
bioRxiv ; 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37609174

ABSTRACT

Over the decades, a small number of model species, each representative of a larger taxa, have dominated the field of biological research. Amongst fishes, zebrafish (Danio rerio) has gained popularity over most other species and while their value as a model is well documented, their usefulness is limited in certain fields of research such as behavior. By embracing other, less conventional experimental organisms, opportunities arise to gain broader insights into evolution and development, as well as studying behavioral aspects not available in current popular model systems. The anabantoid paradise fish (Macropodus opercularis), an "air-breather" species from Southeast Asia, has a highly complex behavioral repertoire and has been the subject of many ethological investigations, but lacks genomic resources. Here we report the reference genome assembly of Macropodus opercularis using long-read sequences at 150-fold coverage. The final assembly consisted of ≈483 Mb on 152 contigs. Within the assembled genome we identified and annotated 20,157 protein coding genes and assigned ≈90% of them to orthogroups. Completeness analysis showed that 98.5% of the Actinopterygii core gene set (ODB10) was present as a complete ortholog in our reference genome with a further 1.2 % being present in a fragmented form. Additionally, we cloned multiple genes important during early development and using newly developed in situ hybridization protocols, we showed that they have conserved expression patterns.

11.
Nat Commun ; 14(1): 4942, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37582932

ABSTRACT

The current view of hematopoiesis considers leukocytes on a continuum with distinct developmental origins, and which exert non-overlapping functions. However, there is less known about the function and phenotype of ontogenetically distinct neutrophil populations. In this work, using a photoconvertible transgenic zebrafish line; Tg(mpx:Dendra2), we selectively label rostral blood island-derived and caudal hematopoietic tissue-derived neutrophils in vivo during steady state or upon injury. By comparing the migratory properties and single-cell expression profiles of both neutrophil populations at steady state we show that rostral neutrophils show higher csf3b expression and migration capacity than caudal neutrophils. Upon injury, both populations share a core transcriptional profile as well as subset-specific transcriptional signatures. Accordingly, both rostral and caudal neutrophils are recruited to the wound independently of their distance to the injury. While rostral neutrophils respond uniformly, caudal neutrophils respond heterogeneously. Collectively, our results reveal that co-existing neutrophils populations with ontogenically distinct origin display functional differences.


Subject(s)
Neutrophils , Zebrafish , Animals , Zebrafish/genetics , Neutrophils/metabolism , Animals, Genetically Modified , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Hematopoiesis
13.
bioRxiv ; 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36865319

ABSTRACT

Mitochondrial reactive oxygen species (mROS) are central to physiology. While excess mROS production has been associated with several disease states, its precise sources, regulation, and mechanism of generation in vivo remain unknown, limiting translational efforts. Here we show that in obesity, hepatic ubiquinone (Q) synthesis is impaired, which raises the QH 2 /Q ratio, driving excessive mROS production via reverse electron transport (RET) from site I Q in complex I. Using multiple complementary genetic and pharmacological models in vivo we demonstrated that RET is critical for metabolic health. In patients with steatosis, the hepatic Q biosynthetic program is also suppressed, and the QH 2 /Q ratio positively correlates with disease severity. Our data identify a highly selective mechanism for pathological mROS production in obesity, which can be targeted to protect metabolic homeostasis.

14.
J Clin Invest ; 133(9)2023 05 01.
Article in English | MEDLINE | ID: mdl-36928190

ABSTRACT

BACKGROUNDHepatic de novo lipogenesis (DNL) and ß-oxidation are tightly coordinated, and their dysregulation is thought to contribute to the pathogenesis of nonalcoholic fatty liver (NAFL). Fasting normally relaxes DNL-mediated inhibition of hepatic ß-oxidation, dramatically increasing ketogenesis and decreasing reliance on the TCA cycle. Thus, we tested whether aberrant oxidative metabolism in fasting NAFL subjects is related to the inability to halt fasting DNL.METHODSForty consecutive nondiabetic individuals with and without a history of NAFL were recruited for this observational study. After phenotyping, subjects fasted for 24 hours, and hepatic metabolism was interrogated using a combination of 2H2O and 13C tracers, magnetic resonance spectroscopy, and high-resolution mass spectrometry.RESULTSWithin a subset of subjects, DNL was detectable after a 24-hour fast and was more prominent in those with NAFL, though it was poorly correlated with steatosis. However, fasting DNL negatively correlated with hepatic ß-oxidation and ketogenesis and positively correlated with citrate synthesis. Subjects with NAFL but undetectable fasting DNL (25th percentile) were comparatively normal. However, those with the highest fasting DNL (75th percentile) were intransigent to the effects of fasting on the concentration of insulin, non-esterified fatty acid, and ketones. Additionally, they sustained glycogenolysis and were spared the loss of oxaloacetate to gluconeogenesis in favor of citrate synthesis, which correlated with DNL and diminished ketogenesis.CONCLUSIONMetabolic flux analysis in fasted subjects indicates that shared metabolic mechanisms link the dysregulations of hepatic DNL, ketogenesis, and the TCA cycle in NAFL.TRIAL REGISTRATIONData were obtained during the enrollment/non-intervention phase of Effect of Vitamin E on Non-Alcoholic Fatty Liver Disease, ClinicalTrials.gov NCT02690792.FUNDINGThis work was supported by the University of Texas Southwestern NORC Quantitative Metabolism Core (NIH P30DK127984), the NIH/National Institute of Diabetes and Digestive and Kidney Diseases (R01DK078184, R01DK128168, R01DK087977, R01DK132254, and K01DK133630), the NIH/National Institute on Alcohol Abuse and Alcoholism (K01AA030327), and the Robert A. Welch Foundation (I-1804).


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Lipogenesis/physiology , Citric Acid , Liver/metabolism , Ketone Bodies/metabolism , Citrates/metabolism , Fasting
15.
bioRxiv ; 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-36824879

ABSTRACT

The liver coordinates the systemic response to nutrient deprivation and availability by producing glucose from gluconeogenesis during fasting and synthesizing lipids via de novo lipogenesis (DNL) when carbohydrates are abundant. Mitochondrial pyruvate metabolism is thought to play important roles in both gluconeogenesis and DNL. We examined the effects of hepatocyte-specific mitochondrial pyruvate carrier (MPC) deletion on the fasting-refeeding response. Rates of DNL during refeeding were impaired by liver MPC deletion, but this did not reduce intrahepatic lipid content. During fasting, glycerol is converted to glucose by two pathways; a direct cytosolic pathway essentially reversing glycolysis and an indirect mitochondrial pathway requiring the MPC. MPC deletion reduced the incorporation of 13C-glycerol into TCA cycle metabolites but not into newly synthesized glucose. However, suppression of glycerol metabolism did not affect glucose concentrations in fasted hepatocyte-specific MPC-deficient mice. Thus, glucose production by kidney and intestine may compensate for MPC deficiency in hepatocytes.

16.
Dev Cell ; 58(2): 155-170.e8, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36693321

ABSTRACT

In anamniote embryos, the major wave of zygotic genome activation starts during the mid-blastula transition. However, some genes escape global genome repression, are activated substantially earlier, and contribute to the minor wave of genome activation. The mechanisms underlying the minor wave of genome activation are little understood. We explored the genomic organization and cis-regulatory mechanisms of a transcription body, in which the minor wave of genome activation is first detected in zebrafish. We identified the miR-430 cluster as having excessive copy number and the highest density of Pol-II-transcribed promoters in the genome, and this is required for forming the transcription body. However, this transcription body is not essential for, nor does it encompasse, minor wave transcription globally. Instead, distinct minor-wave-specific promoter architecture suggests that promoter-autonomous mechanisms regulate the minor wave of genome activation. The minor-wave-specific features also suggest distinct transcription initiation mechanisms between the minor and major waves of genome activation.


Subject(s)
MicroRNAs , Transcription, Genetic , Animals , Zebrafish/genetics , Zygote , RNA Polymerase II/genetics , MicroRNAs/genetics , Gene Expression Regulation, Developmental
17.
Am J Physiol Endocrinol Metab ; 324(1): E9-E23, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36351254

ABSTRACT

Acute exercise increases liver gluconeogenesis to supply glucose to working muscles. Concurrently, elevated liver lipid breakdown fuels the high energetic cost of gluconeogenesis. This functional coupling between liver gluconeogenesis and lipid oxidation has been proposed to underlie the ability of regular exercise to enhance liver mitochondrial oxidative metabolism and decrease liver steatosis in individuals with nonalcoholic fatty liver disease. Herein we tested whether repeated bouts of increased hepatic gluconeogenesis are necessary for exercise training to lower liver lipids. Experiments used diet-induced obese mice lacking hepatic phosphoenolpyruvate carboxykinase 1 (KO) to inhibit gluconeogenesis and wild-type (WT) littermates. 2H/13C metabolic flux analysis quantified glucose and mitochondrial oxidative fluxes in untrained mice at rest and during acute exercise. Circulating and tissue metabolite levels were determined during sedentary conditions, acute exercise, and refeeding postexercise. Mice also underwent 6 wk of treadmill running protocols to define hepatic and extrahepatic adaptations to exercise training. Untrained KO mice were unable to maintain euglycemia during acute exercise resulting from an inability to increase gluconeogenesis. Liver triacylglycerides were elevated after acute exercise and circulating ß-hydroxybutyrate was higher during postexercise refeeding in untrained KO mice. In contrast, exercise training prevented liver triacylglyceride accumulation in KO mice. This was accompanied by pronounced increases in indices of skeletal muscle mitochondrial oxidative metabolism in KO mice. Together, these results show that hepatic gluconeogenesis is dispensable for exercise training to reduce liver lipids. This may be due to responses in ketone body metabolism and/or metabolic adaptations in skeletal muscle to exercise.NEW & NOTEWORTHY Exercise training reduces hepatic steatosis partly through enhanced hepatic terminal oxidation. During acute exercise, hepatic gluconeogenesis is elevated to match the heightened rate of muscle glucose uptake and maintain glucose homeostasis. It has been postulated that the hepatic energetic stress induced by elevating gluconeogenesis during acute exercise is a key stimulus underlying the beneficial metabolic responses to exercise training. This study shows that hepatic gluconeogenesis is not necessary for exercise training to lower liver lipids.


Subject(s)
Glucose , Liver , Mice , Animals , Phosphoenolpyruvate/metabolism , Glucose/metabolism , Liver/metabolism , Gluconeogenesis , 3-Hydroxybutyric Acid/metabolism
18.
Commun Biol ; 5(1): 1404, 2022 12 26.
Article in English | MEDLINE | ID: mdl-36572749

ABSTRACT

The recent whole-genome duplication (WGD) in goldfish (Carassius auratus) approximately 14 million years ago makes it a valuable model for studying gene evolution during the early stages after WGD. We analyzed the transcriptome of the goldfish retina at the level of single-cell (scRNA-seq) and open chromatin regions (scATAC-seq). We identified a group of genes that have undergone dosage selection, accounting for 5% of the total 11,444 ohnolog pairs. We also identified 306 putative sub/neo-functionalized ohnolog pairs that are likely to be under cell-type-specific genetic variation at single-cell resolution. Diversification in the expression patterns of several ohnolog pairs was observed in the retinal cell subpopulations. The single-cell level transcriptome analysis in this study uncovered the early stages of evolution in retinal cell of goldfish after WGD. Our results provide clues for understanding the relationship between the early stages of gene evolution after WGD and the evolution of diverse vertebrate retinal functions.


Subject(s)
Goldfish , Transcriptome , Animals , Goldfish/genetics , Genome , Evolution, Molecular , Gene Expression Profiling
20.
Cell Genom ; 2(9)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36212030

ABSTRACT

Using adult zebrafish inner ears as a model for sensorineural regeneration, we ablated the mechanosensory receptors and characterized the single-cell epigenome and transcriptome at consecutive time points during hair cell regeneration. We utilized deep learning on the regeneration-induced open chromatin sequences and identified cell-specific transcription factor (TF) motif patterns. Enhancer activity correlated with gene expression and identified potential gene regulatory networks. A pattern of overlapping Sox- and Six-family TF gene expression and binding motifs was detected, suggesting a combinatorial program of TFs driving regeneration and cell identity. Pseudotime analysis of single-cell transcriptomic data suggested that support cells within the sensory epithelium changed cell identity to a "progenitor" cell population that could differentiate into hair cells. We identified a 2.6 kb DNA enhancer upstream of the sox2 promoter that, when deleted, showed a dominant phenotype that resulted in a hair-cell-regeneration-specific deficit in both the lateral line and adult inner ear.

SELECTION OF CITATIONS
SEARCH DETAIL
...