Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Environ Int ; 189: 108763, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824843

ABSTRACT

BACKGROUND: Endocrine disrupting compounds (EDCs) such as phthalates and phenols can affect placental functioning and fetal health, potentially via epigenetic modifications. We investigated the associations between pregnancy exposure to synthetic phenols and phthalates estimated from repeated urine sampling and genome wide placental DNA methylation. METHODS: The study is based on 387 women with placental DNA methylation assessed with Infinium MethylationEPIC arrays and with 7 phenols, 13 phthalates, and two non-phthalate plasticizer metabolites measured in pools of urine samples collected twice during pregnancy. We conducted an exploratory analysis on individual CpGs (EWAS) and differentially methylated regions (DMRs) as well as a candidate analysis focusing on 20 previously identified CpGs. Sex-stratified analyses were also performed. RESULTS: In the exploratory analysis, when both sexes were studied together no association was observed in the EWAS. In the sex-stratified analysis, 114 individual CpGs (68 in males, 46 in females) were differentially methylated, encompassing 74 genes (36 for males and 38 for females). We additionally identified 28 DMRs in the entire cohort, 40 for females and 42 for males. Associations were mostly positive (for DMRs: 93% positive associations in the entire cohort, 60% in the sex-stratified analysis), with the exception of several associations for bisphenols and DINCH metabolites that were negative. Biomarkers associated with most DMRs were parabens, DEHP, and DiNP metabolite concentrations. Some DMRs encompassed imprinted genes including APC (associated with parabens and DiNP metabolites), GNAS (bisphenols), ZIM2;PEG3;MIMT1 (parabens, monoethyl phthalate), and SGCE;PEG10 (parabens, DINCH metabolites). Terms related to adiposity, lipid and glucose metabolism, and cardiovascular function were among the enriched phenotypes associated with differentially methylated CpGs. The candidate analysis identified one CpG mapping to imprinted LGALS8 gene, negatively associated with ethylparaben. CONCLUSIONS: By combining improved exposure assessment and extensive placental epigenome coverage, we identified several novel genes associated with the exposure, possibly in a sex-specific manner.


Subject(s)
DNA Methylation , Endocrine Disruptors , Epigenesis, Genetic , Maternal Exposure , Phenols , Phthalic Acids , Placenta , Humans , DNA Methylation/drug effects , Female , Pregnancy , Placenta/metabolism , Placenta/drug effects , Adult , Male , CpG Islands , Environmental Pollutants
2.
Eur J Immunol ; 54(4): e2350506, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38429238

ABSTRACT

Tolerance to self-proteins involves multiple mechanisms, including conventional CD4+ T-cell (Tconv) deletion in the thymus and the recruitment of natural regulatory T cells (nTregs). The significant incidence of autoantibodies specific for the blood coagulation factor VIII (FVIII) in healthy donors illustrates that tolerance to self-proteins is not always complete. In contrast to FVIII-specific Tconvs, FVIII-specific nTregs have never been revealed and characterized. To determine the frequency of FVIII-specific Tregs in human peripheral blood, we assessed the specificity of in vitro expanded Tregs by the membrane expression of the CD137 activation marker. Amplified Tregs maintain high levels of FOXP3 expression and exhibit almost complete demethylation of the FOXP3 Treg-specific demethylated region. The cells retained FOXP3 expression after long-term culture in vitro, strongly suggesting that FVIII-specific Tregs are derived from the thymus. From eleven healthy donors, we estimated the frequencies of FVIII-specific Tregs at 0.17 cells per million, which is about 10-fold lower than the frequency of FVIII-specific CD4+ T cells we previously published. Our results shed light on the mechanisms of FVIII tolerance by a renewed approach that could be extended to other self- or non-self-antigens.


Subject(s)
Factor VIII , Hemophilia A , Humans , Factor VIII/metabolism , T-Lymphocytes, Regulatory , Hemophilia A/metabolism , Autoantibodies , Forkhead Transcription Factors/metabolism
3.
J Cell Biol ; 223(4)2024 04 01.
Article in English | MEDLINE | ID: mdl-38376465

ABSTRACT

DNA methylation (DNAme) is a key epigenetic mark that regulates critical biological processes maintaining overall genome stability. Given its pleiotropic function, studies of DNAme dynamics are crucial, but currently available tools to interfere with DNAme have limitations and major cytotoxic side effects. Here, we present cell models that allow inducible and reversible DNAme modulation through DNMT1 depletion. By dynamically assessing whole genome and locus-specific effects of induced passive demethylation through cell divisions, we reveal a cooperative activity between DNMT1 and DNMT3B, but not of DNMT3A, to maintain and control DNAme. We show that gradual loss of DNAme is accompanied by progressive and reversible changes in heterochromatin, compartmentalization, and peripheral localization. DNA methylation loss coincides with a gradual reduction of cell fitness due to G1 arrest, with minor levels of mitotic failure. Altogether, this system allows DNMTs and DNA methylation studies with fine temporal resolution, which may help to reveal the etiologic link between DNAme dysfunction and human disease.


Subject(s)
DNA (Cytosine-5-)-Methyltransferase 1 , DNA Methylation , DNA Methyltransferase 3A , Epigenomics , Humans , Cell Division , Heterochromatin/genetics , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA Methyltransferase 3A/genetics , Cell Line
4.
Environ Pollut ; 335: 122197, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37481027

ABSTRACT

A previous study reported positive associations of maternal urinary concentrations of triclosan, a synthetic phenol with widespread exposure in the general population, with placental DNA methylation of male fetuses. Given the high number of comparisons performed in -omic research, further studies were needed to validate and extend on these findings. Using a cohort of male and female fetuses with repeated maternal urine samples to assess exposure, we studied the associations between triclosan and placental DNA methylation. We assessed triclosan concentrations in two pools of 21 urine samples collected among 395 women from the SEPAGES cohort. We used Infinium Methylation EPIC arrays to measure DNA methylation in placental biopsies collected at delivery. We performed a candidate study restricted to a set of candidate CpGs (n = 500) identified in a previous work as well as an exploratory epigenome-wide association study to investigate the associations between triclosan and differentially methylated probes and regions. Analyses were conducted on the whole population and stratified by child's sex. Mediation analysis was performed to test whether heterogeneity of placental tissue may mediate the observed associations. In the candidate approach, we confirmed 18 triclosan-associated genes when both sexes were considered. After stratification for child's sex, triclosan was associated with 72 genes in females and three in males. Most of the associations were positive and several CpGs mapped to imprinted genes: FBRSL1, KCNQ1, RHOBTB3, and SMOC1. A mediation effect by placental tissue heterogeneity was identified for most of the observed associations. In the exploratory analysis, we identified a few isolated associations in the sex-stratified analysis. In line with a previous study on male placentas, our approach revealed several positive associations between triclosan exposure and placental DNA methylation. Several identified loci mapped to imprinted genes.


Subject(s)
Prenatal Exposure Delayed Effects , Triclosan , Child , Humans , Female , Pregnancy , Male , Placenta/metabolism , DNA Methylation , Triclosan/toxicity , Triclosan/metabolism , Prenatal Exposure Delayed Effects/metabolism
5.
Front Cell Dev Biol ; 11: 1185311, 2023.
Article in English | MEDLINE | ID: mdl-37287456

ABSTRACT

Pregnancy is a state of multiple physiological adaptations. Since methylation of DNA is an epigenetic mechanism that regulates gene expression and contributes to adaptive phenotypic variations, we investigated methylation changes in maternal blood of a longitudinal cohort of pregnant women from the first trimester of gestation to the third. Interestingly, during pregnancy, we found a gain of methylation in genes involved in morphogenesis, such as ezrin, while we identified a loss of methylation in genes promoting maternal-infant bonding (AVP and PPP1R1B). Together, our results provide insights into the biological mechanisms underlying physiological adaptations during pregnancy.

6.
Clin Epigenetics ; 14(1): 156, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443814

ABSTRACT

The protocadherin proteins are cell adhesion molecules at the crossroad of signaling pathways playing a major role in neuronal development. It is now understood that their role as signaling hubs is not only important for the normal physiology of cells but also for the regulation of hallmarks of cancerogenesis. Importantly, protocadherins form a cluster of genes that are regulated by DNA methylation. We have identified for the first time that PCDHB15 gene is DNA-hypermethylated on its unique exon in the metastatic melanoma-derived cell lines and patients' metastases compared to primary tumors. This DNA hypermethylation silences the gene, and treatment with the DNA demethylating agent 5-aza-2'-deoxycytidine reinduces its expression. We explored the role of PCDHB15 in melanoma aggressiveness and showed that overexpression impairs invasiveness and aggregation of metastatic melanoma cells in vitro and formation of lung metastasis in vivo. These findings highlight important modifications of the methylation of the PCDHß genes in melanoma and support a functional role of PCDHB15 silencing in melanoma aggressiveness.


Subject(s)
Lung Neoplasms , Melanoma , Humans , DNA Methylation , Melanoma/genetics , Signal Transduction , Exons , Lung Neoplasms/genetics
7.
Hum Reprod ; 37(11): 2709-2721, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36206092

ABSTRACT

STUDY QUESTION: Can we detect DNA methylation differences between ART children that underwent embryo culture in different media? SUMMARY ANSWER: We identified no significant differences in site-specific or regional DNA methylation between the different culture medium groups. WHAT IS KNOWN ALREADY: Embryo culture in G3 or K-SICM medium leads to differences in embryonic, neonatal and childhood outcomes, including growth and weight. The methylome may mediate this association as the period of in vitro culture of ART treatments coincides with epigenetic reprogramming. STUDY DESIGN, SIZE, DURATION: This study was conducted as a follow-up to a previous culture medium comparison study in which couples were pseudo-randomized to embryo culture in G3 or K-SICM medium. Of the resultant singletons, 120 (n = 65 G3, n = 55 K-SICM), were recruited at age 9. PARTICIPANTS/MATERIALS, SETTING, METHODS: The ART children provided a saliva sample from which the methylome was analysed using the Infinium MethylationEPIC array. After quality and context filtering, 106 (n = 57 G3, n = 49 K-SICM) samples and 659 708 sites were retained for the analyses. Differential methylation analyses were conducted using mixed effects linear models corrected for age, sex, sample plate and cell composition. These were applied to all cytosine-guanine dinucleotide (CpG) sites, various genomic regions (genes, promoters, CpG Islands (CGIs)) and as a targeted analysis of imprinted genes and birth weight-associated CpG sites. Differential variance was assessed using the improved epigenetic variable outliers for risk prediction analysis (iEVORA) algorithm and methylation outliers were identified using a previously defined threshold (upper or lower quartile plus or minus three times the interquartile range, respectively). MAIN RESULTS AND THE ROLE OF CHANCE: After correcting for multiple testing, we did not identify any significantly differentially methylated CpG sites, genes, promoters or CGIs between G3 and K-SICM children despite a lenient corrected P-value threshold of 0.1. Targeted analyses of (sites within) imprinted genes and birth weight-associated sites also did not identify any significant differences. The number of DNA methylation outliers per sample was comparable between the culture medium groups. iEVORA identified 101 differentially variable CpG sites of which 94 were more variable in the G3 group. LARGE SCALE DATA: Gene Expression Omnibus (GEO) GSE196432. LIMITATIONS, REASONS FOR CAUTION: To detect significant methylation differences with a magnitude of <10% between the groups many more participants would be necessary; however, the clinical relevance of such small differences is unclear. WIDER IMPLICATIONS OF THE FINDINGS: The results of this study are reassuring, suggesting that if there is an effect of the culture medium on DNA methylation (and methylation-mediated diseases risk), it does not differ between the two media investigated here. The findings concur with other methylome studies of ART neonates and children that underwent embryo culture in different media, which also found no significant methylome differences. STUDY FUNDING/COMPETING INTEREST(S): Study funded by March of Dimes (6-FY13-153), EVA (Erfelijkheid Voortplanting & Aanleg) specialty programme (grant no. KP111513) of Maastricht University Medical Centre (MUMC+) and the Horizon 2020 innovation (ERIN) (grant no. EU952516) of the European Commission. The authors do not report any conflicts of interest relevant to this study. TRIAL REGISTRATION NUMBER: Dutch Trial register-NL4083.


Subject(s)
Epigenome , Reproductive Techniques, Assisted , Child , Humans , Birth Weight , DNA Methylation , Follow-Up Studies , Randomized Controlled Trials as Topic
8.
Elife ; 112022 09 20.
Article in English | MEDLINE | ID: mdl-36125262

ABSTRACT

Aberrant DNA methylation is a well-known feature of tumours and has been associated with metastatic melanoma. However, since melanoma cells are highly heterogeneous, it has been challenging to use affected genes to predict tumour aggressiveness, metastatic evolution, and patients' outcomes. We hypothesized that common aggressive hypermethylation signatures should emerge early in tumorigenesis and should be shared in aggressive cells, independent of the physiological context under which this trait arises. We compared paired melanoma cell lines with the following properties: (i) each pair comprises one aggressive counterpart and its parental cell line and (ii) the aggressive cell lines were each obtained from different host and their environment (human, rat, and mouse), though starting from the same parent cell line. Next, we developed a multi-step genomic pipeline that combines the DNA methylome profile with a chromosome cluster-oriented analysis. A total of 229 differentially hypermethylated genes was commonly found in the aggressive cell lines. Genome localization analysis revealed hypermethylation peaks and clusters, identifying eight hypermethylated gene promoters for validation in tissues from melanoma patients. Five Cytosine-phosphate-Guanine (CpGs) identified in primary melanoma tissues were transformed into a DNA methylation score that can predict survival (log-rank test, p=0.0008). This strategy is potentially universally applicable to other diseases involving DNA methylation alterations.


Subject(s)
Melanoma , Skin Neoplasms , Animals , Chromosomes , CpG Islands , Cytosine , DNA Methylation , Epigenesis, Genetic , Epigenome , Gene Expression Regulation, Neoplastic , Guanine , Humans , Melanoma/genetics , Melanoma/pathology , Mice , Phosphates , Rats , Skin Neoplasms/genetics , Melanoma, Cutaneous Malignant
9.
NPJ Genom Med ; 7(1): 39, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35768464

ABSTRACT

A growing number of children born are conceived through in vitro fertilisation (IVF), which has been linked to an increased risk of adverse perinatal outcomes, as well as altered growth profiles and cardiometabolic differences in the resultant individuals. Some of these outcomes have also been shown to be influenced by the use of different IVF culture media and this effect is hypothesised to be mediated epigenetically, e.g. through the methylome. As such, we profiled the umbilical cord blood methylome of IVF neonates that underwent preimplantation embryo development in two different IVF culture media (G5 or HTF), using the Infinium Human Methylation EPIC BeadChip. We found no significant methylation differences between the two groups in terms of: (i) systematic differences at CpG sites or regions, (ii) imprinted sites/genes or birth weight-associated sites, (iii) stochastic differences presenting as DNA methylation outliers or differentially variable sites, and (iv) epigenetic gestational age acceleration.

10.
Environ Int ; 160: 107054, 2022 02.
Article in English | MEDLINE | ID: mdl-35032864

ABSTRACT

BACKGROUND: Exposure to phthalates during pregnancy may alter DNA methylation in the placenta, a crucial organ for the growth and development of the fetus. OBJECTIVES: We studied associations between urinary concentrations of phthalate biomarkers during pregnancy and placental DNA methylation. METHODS: We measured concentrations of 11 phthalate metabolites in maternal spot urine samples collected between 22 and 29 gestational weeks in 202 pregnant women. We analyzed DNA methylation levels in placental tissue (fetal side) collected at delivery. We first investigated changes in global DNA methylation of repetitive elements Alu and LINE-1. We then performed an adjusted epigenome-wide association study using IlluminaHM450 BeadChips and identified differentially methylated regions (DMRs) associated with phthalate exposure. RESULTS: Monobenzyl phthalate concentration was inversely associated with placental methylation of Alu repeats. Moreover, all phthalate biomarkers except for monocarboxy-iso-octyl phthalate and mono(2-ethyl-5-hydroxyhexyl) phthalate were associated with at least one DMR. All but three DMRs showed increased DNA methylation with increased phthalate exposure. The largest identified DMR (22 CpGs) was positively associated with monocarboxy-iso-nonyl phthalate and encompassed heat shock proteins (HSPA1A, HSPA1L). The remaining DMRs encompassed transcription factors and nucleotide exchange factors, among other genes. CONCLUSIONS: This is the first description of genome-wide modifications of placental DNA methylation in association with pregnancy exposure to phthalates. Our results suggest epigenetic mechanisms by which exposure to these compounds could affect fetal development. Of interest, four identified DMRs had been previously associated with maternal smoking, which may suggest particular sensitivity of these genomic regions to the effect of environmental contaminants.


Subject(s)
DNA Methylation , Phthalic Acids , Epigenome , Female , Humans , Male , Maternal Exposure/adverse effects , Phthalic Acids/metabolism , Phthalic Acids/toxicity , Placenta/metabolism , Pregnancy
11.
Environ Pollut ; 290: 118024, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34523531

ABSTRACT

In utero exposure to environmental chemicals, such as synthetic phenols, may alter DNA methylation in different tissues, including placenta - a critical organ for fetal development. We studied associations between prenatal urinary biomarker concentrations of synthetic phenols and placental DNA methylation. Our study involved 202 mother-son pairs from the French EDEN cohort. Nine phenols were measured in spot urine samples collected between 22 and 29 gestational weeks. We performed DNA methylation analysis of the fetal side of placental tissues using the IlluminaHM450 BeadChips. We evaluated methylation changes of individual CpGs in an adjusted epigenome-wide association study (EWAS) and identified differentially methylated regions (DMRs). We performed mediation analysis to test whether placental tissue heterogeneity mediated the association between urinary phenol concentrations and DNA methylation. We identified 46 significant DMRs (≥5 CpGs) associated with triclosan (37 DMRs), 2,4-dichlorophenol (3), benzophenone-3 (3), methyl- (2) and propylparaben (1). All but 2 DMRs were positively associated with phenol concentrations. Out of the 46 identified DMRs, 7 (6 for triclosan) encompassed imprinted genes (APC, FOXG1, GNAS, GNASAS, MIR886, PEG10, SGCE), which represented a significant enrichment. Other identified DMRs encompassed genes encoding proteins responsible for cell signaling, transmembrane transport, cell adhesion, inflammatory, apoptotic and immunological response, genes encoding transcription factors, histones, tumor suppressors, genes involved in tumorigenesis and several cancer risk biomarkers. Mediation analysis suggested that placental cell heterogeneity may partly explain these associations. This is the first study describing the genome-wide modifications of placental DNA methylation associated with pregnancy exposure to synthetic phenols or their precursors. Our results suggest that cell heterogeneity might mediate the effects of triclosan exposure on placental DNA methylation. Additionally, the enrichment of imprinted genes within the DMRs suggests mechanisms by which certain exposures, mainly to triclosan, could affect fetal development.


Subject(s)
DNA Methylation , Epigenome , Female , Histones/metabolism , Humans , Infant , Male , Phenols/metabolism , Placenta/metabolism , Pregnancy
12.
Epigenomics ; 13(3): 169-186, 2021 02.
Article in English | MEDLINE | ID: mdl-33471557

ABSTRACT

Aim: Nonhuman primates are essential for research on many human diseases. The Infinium Human Methylation450/EPIC BeadChips are popular tools for the study of the methylation state across the human genome at affordable cost. Methods: We performed a precise evaluation and re-annotation of the BeadChip probes for the analysis of genome-wide DNA methylation patterns in rhesus macaques and African green monkeys through in silico analyses combined with functional validation by pyrosequencing. Results: Up to 165,847 of the 450K and 261,545 probes of the EPIC BeadChip can be reliably used. The annotation files are provided in a format compatible with a variety of standard bioinformatic pipelines. Conclusion: Our study will facilitate high-throughput DNA methylation analyses in Macaca mulatta and Chlorocebus sabaeus.


Subject(s)
Chlorocebus aethiops/genetics , DNA Methylation , Macaca mulatta/genetics , Nucleic Acid Probes , Oligonucleotide Array Sequence Analysis , Animals , CpG Islands , Genome , Humans , Molecular Sequence Annotation
13.
Clin Epigenetics ; 12(1): 188, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33298174

ABSTRACT

The molecular mechanisms underlying HIV-induced inflammation, which persists even during effective long-term treatment, remain incompletely defined. Here, we studied pathogenic and nonpathogenic simian immunodeficiency virus (SIV) infections in macaques and African green monkeys, respectively. We longitudinally analyzed genome-wide DNA methylation changes in CD4 + T cells from lymph node and blood, using arrays. DNA methylation changes after SIV infection were more pronounced in lymph nodes than blood and already detected in primary infection. Differentially methylated genes in pathogenic SIV infection were enriched for Th1-signaling (e.g., RUNX3, STAT4, NFKB1) and metabolic pathways (e.g., PRKCZ). In contrast, nonpathogenic SIVagm infection induced DNA methylation in genes coding for regulatory proteins such as LAG-3, arginase-2, interleukin-21 and interleukin-31. Between 15 and 18% of genes with DNA methylation changes were differentially expressed in CD4 + T cells in vivo. Selected identified sites were validated using bisulfite pyrosequencing in an independent cohort of uninfected, viremic and SIV controller macaques. Altered DNA methylation was confirmed in blood and lymph node CD4 + T cells in viremic macaques but was notably absent from SIV controller macaques. Our study identified key genes differentially methylated already in primary infection and in tissues that could contribute to the persisting metabolic disorders and inflammation in HIV-infected individuals despite effective treatment.


Subject(s)
Acquired Immunodeficiency Syndrome/blood , Acquired Immunodeficiency Syndrome/genetics , Immunity/genetics , Lymph Nodes/metabolism , Simian Immunodeficiency Virus/genetics , Acquired Immunodeficiency Syndrome/immunology , Acquired Immunodeficiency Syndrome/pathology , Animals , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/virology , Chlorocebus aethiops/blood , Chlorocebus aethiops/genetics , Chlorocebus aethiops/virology , CpG Islands/genetics , DNA Methylation/genetics , Epigenomics/methods , Genome-Wide Association Study/methods , HIV Infections/genetics , HIV Infections/immunology , Humans , Lymph Nodes/virology , Macaca mulatta/blood , Macaca mulatta/genetics , Macaca mulatta/virology , Models, Animal , Simian Immunodeficiency Virus/isolation & purification , Simian Immunodeficiency Virus/pathogenicity
14.
iScience ; 23(5): 101086, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32371375

ABSTRACT

STOX1 is a transcription factor involved in preeclampsia and Alzheimer disease. We show that the knock-down of the gene induces rather mild effect on gene expression in trophoblast cell lines (BeWo). We identified binding sites of STOX1 shared by the two major isoforms, STOX1A and STOX1B. Profiling gene expression of cells overexpressing either STOX1A or STOX1B, we identified genes downregulated by both isoforms, with a STOX1 binding site in their promoters. Among those, STOX1-induced Annexin A1 downregulation led to abolished membrane repair in BeWo cells. By contrast, overexpression of STOX1A or B has opposite effects on trophoblast fusion (acceleration and inhibition, respectively) accompanied by syncytin genes deregulation. Also, STOX1A overexpression led to abnormal regulation of oxidative and nitrosative stress. In sum, our work shows that STOX1 isoform imbalance is a cause of gene expression deregulation in the trophoblast, possibly leading to placental dysfunction and preeclampsia.

15.
Acta Neuropathol Commun ; 8(1): 29, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32151281

ABSTRACT

Multiple system atrophy (MSA) is a rare disease with a fatal outcome. To date, little is known about the molecular processes underlying disease development. Its clinical overlap with related neurodegenerative movement disorders underlines the importance for expanding the knowledge of pathological brain processes in MSA patients to improve distinction from similar diseases. In the current study, we investigated DNA methylation changes in brain samples from 41 MSA patients and 37 healthy controls. We focused on the prefrontal cortex, a moderately affected area in MSA. Using Illumina MethylationEPIC arrays, we investigated 5-methylcytosine (5mC) as well as 5-hydroxymethylcytosine (5hmC) changes throughout the genome. We identified five significantly different 5mC probes (adj. P < 0.05), of which one probe mapping to the AREL1 gene involved in antigen presentation was decreased in MSA patients. This decrease correlated with increased 5hmC levels. Further, we identified functional DNA methylation modules involved in inflammatory processes. As expected, the decreased 5mC levels on AREL1 was concordant with increased gene expression levels of both AREL1 as well as MHC Class I HLA genes in MSA brains. We also investigated whether these changes in antigen-related processes in the brain associated with changes in peripheral mononuclear cells. Using flow cytometry on an independent cohort of MSA patients, we identified a decrease in circulating non-classical CD14+CD16++ blood monocytes, whereas T and NK cell populations were unchanged. Taken together, our results support the view of an active neuroimmune response in brains of MSA patients.


Subject(s)
HLA Antigens/genetics , Multiple System Atrophy/genetics , Prefrontal Cortex/metabolism , Ubiquitin-Protein Ligases/genetics , 5-Methylcytosine/analogs & derivatives , Aged , Aged, 80 and over , Brain , Case-Control Studies , DNA Methylation , Epigenesis, Genetic , Epigenome , Female , Flow Cytometry , HLA Antigens/immunology , Humans , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/immunology , Male , Middle Aged , Monocytes/immunology , Multiple System Atrophy/immunology , T-Lymphocytes/immunology , Transcriptome
16.
Arthritis Rheumatol ; 72(4): 576-587, 2020 04.
Article in English | MEDLINE | ID: mdl-31609517

ABSTRACT

OBJECTIVE: To study the involvement of Treg cells expressing tumor necrosis factor receptor type II (TNFRII) in exerting control of inflammation in experimental models and in the response to anti-TNF treatments in patients with rheumatoid arthritis (RA) or spondyloarthritis (SpA). METHODS: The role of TNFRII in Treg cells was explored using a multilevel translational approach. Treg cell stability was evaluated by analyzing the methylation status of the Foxp3 locus using bisulfite sequencing. Two models of inflammation (imiquimod-induced skin inflammation and delayed-type hypersensitivity arthritis [DTHA]) were induced in TNFRII-/- mice, with or without transfer of purified CD4+CD25+ cells from wild-type (WT) mice. In patients with RA and those with SpA, the evolution of the TNFRII+ Treg cell population before and after targeted treatment was monitored. RESULTS: Foxp3 gene methylation in Treg cells was greater in TNFRII-/- mice than in WT mice (50% versus 36.7%). In cultured Treg cells, TNF enhanced the expression, maintenance, and proliferation of Foxp3 through TNFRII signaling. Imiquimod-induced skin inflammation and DTHA were aggravated in TNFRII-/- mice (P < 0.05 for mice with skin inflammation and P < 0.0001 for mice with ankle swelling during DTHA compared to WT mice). Adoptive transfer of WT mouse Treg cells into TNFRII-/- mice prevented aggravation of arthritis. In patients with RA receiving anti-TNF treatments, but not those receiving tocilizumab, the frequency of TNFRII+ Treg cells was increased at 3 months of treatment compared to baseline (mean ± SEM 65.2 ± 3.1% versus 49.1 ± 5.5%; P < 0.01). In contrast, in anti-TNF-treated patients with SpA, the frequency of TNFRII+ Treg cells was not modified. CONCLUSION: TNFRII expression identifies a subset of Treg cells that are characterized by stable expression of Foxp3 via gene hypomethylation, and adoptive transfer of TNFRII-expressing Treg cells ameliorates inflammation in experimental models. Expansion and activation of TNFRII+ Treg cells may be one of the mechanisms by which anti-TNF agents control inflammation in RA, but not in SpA.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antirheumatic Agents/therapeutic use , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/metabolism , Forkhead Transcription Factors/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism , T-Lymphocytes, Regulatory/metabolism , Tumor Necrosis Factor Inhibitors/therapeutic use , Adult , Aged , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Antirheumatic Agents/pharmacology , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Cell Proliferation , Female , Humans , Male , Mice , Middle Aged , Receptors, Tumor Necrosis Factor, Type II/genetics , Spondylarthritis/drug therapy , Spondylarthritis/metabolism , Tumor Necrosis Factor Inhibitors/pharmacology
17.
Clin Epigenetics ; 11(1): 9, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30651148

ABSTRACT

BACKGROUND: Efficient treatments against metastatic melanoma dissemination are still lacking. Here, we report that low-cytotoxic concentrations of 5-aza-2'-deoxycytidine, a DNA demethylating agent, prevent in vitro 3D invasiveness of metastatic melanoma cells and reduce lung metastasis formation in vivo. RESULTS: We unravelled that this beneficial effect is in part due to MIR-199A2 re-expression by promoter demethylation. Alone, this miR showed an anti-invasive and anti-metastatic effect. Throughout integration of micro-RNA target prediction databases with transcriptomic analysis after 5-aza-2'-deoxycytidine treatments, we found that miR-199a-3p downregulates set of genes significantly involved in invasion/migration processes. In addition, analysis of data from melanoma patients showed a stage- and tissue type-dependent modulation of MIR-199A2 expression by DNA methylation. CONCLUSIONS: Thus, our data suggest that epigenetic- and/or miR-based therapeutic strategies can be relevant to limit metastatic dissemination of melanoma.


Subject(s)
DNA Methylation/drug effects , Decitabine/pharmacology , Lung Neoplasms/secondary , Melanoma/genetics , MicroRNAs/genetics , Spheroids, Cellular/cytology , Animals , Cell Line, Tumor , Cell Survival/drug effects , Female , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/drug effects , Gene Regulatory Networks/drug effects , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Melanoma/drug therapy , Mice , Neoplasm Invasiveness , Neoplasm Transplantation , Promoter Regions, Genetic , Sequence Analysis, RNA , Spheroids, Cellular/drug effects , Up-Regulation
18.
Nat Commun ; 9(1): 2929, 2018 07 26.
Article in English | MEDLINE | ID: mdl-30050033

ABSTRACT

Genetic, epigenetic, and environmental factors contribute to the multifactorial disorder progressive supranuclear palsy (PSP). Here, we study epigenetic changes by genome-wide analysis of DNA from postmortem tissue of forebrains of patients and controls and detect significant (P < 0.05) methylation differences at 717 CpG sites in PSP vs. controls. Four-hundred fifty-one of these sites are associated with protein-coding genes. While differential methylation only affects a few sites in most genes, DLX1 is hypermethylated at multiple sites. Expression of an antisense transcript of DLX1, DLX1AS, is reduced in PSP brains. The amount of DLX1 protein is increased in gray matter of PSP forebrains. Pathway analysis suggests that DLX1 influences MAPT-encoded Tau protein. In a cell system, overexpression of DLX1 results in downregulation of MAPT while overexpression of DLX1AS causes upregulation of MAPT. Our observations suggest that altered DLX1 methylation and expression contribute to pathogenesis of PSP by influencing MAPT.


Subject(s)
DNA Methylation/genetics , Epigenesis, Genetic/genetics , Homeodomain Proteins/metabolism , Supranuclear Palsy, Progressive/genetics , Supranuclear Palsy, Progressive/pathology , Transcription Factors/metabolism , Aged , Aged, 80 and over , Female , Homeodomain Proteins/genetics , Humans , Male , Transcription Factors/genetics , tau Proteins/genetics , tau Proteins/metabolism
19.
Epigenomics ; 10(8): 1131-1145, 2018 08.
Article in English | MEDLINE | ID: mdl-30052057

ABSTRACT

AIM: To assess whether DNA methylation levels account for the noninherited phenotypic variations observed among cystic fibrosis (CF) patients. PATIENTS & METHODS: Using the 450 K BeadChip, we profiled DNA methylation in nasal epithelial cells collected from 32 CF patients and 16 controls. RESULTS: We detected substantial DNA methylation differences up to 55% (median ß change 0.13; IQR: 0.15-0.11) between CF patients and controls. DNA methylation levels differed between mild and severe CF patients and correlated with lung function at 50 CpG sites. CONCLUSION: In CF samples, dynamic changes of DNA methylation occurred in genes responsible for the integrity of the epithelium and the inflammatory and immune responses, were prominent in transcriptionally active genomic regions and were over-represented in enhancers active in lung tissues. ( Clinicaltrials.gov NCT02884622).


Subject(s)
Cystic Fibrosis/genetics , DNA Methylation , Adult , CpG Islands , Epithelial Cells/metabolism , Female , Gene Expression , Humans , Male , Nose/cytology
20.
Arthritis Rheumatol ; 70(6): 878-890, 2018 06.
Article in English | MEDLINE | ID: mdl-29361205

ABSTRACT

OBJECTIVE: Systemic lupus erythematosus (SLE) has limited monozygotic twin concordance, implying a role for pathogenic factors other than genetic variation, such as epigenetic changes. Using the disease-discordant twin model, we investigated genome-wide DNA methylation changes in sorted CD4+ T cells, monocytes, granulocytes, and B cells in twin pairs with at least 1 SLE-affected twin. METHODS: Peripheral blood obtained from 15 SLE-affected twin pairs (6 monozygotic and 9 dizygotic) was processed using density-gradient centrifugation for the granulocyte fraction. CD4+ T cells, monocytes, and B cells were further isolated using magnetic beads. Genome-wide DNA methylation was analyzed using Infinium HumanMethylation450K BeadChips. When comparing probes from SLE-affected twins and co-twins, differential DNA methylation was considered statistically significant when the P value was less than 0.01 and biologically relevant when the median DNA methylation difference was >7%. Findings were validated by pyrosequencing and replicated in an independent case-control sample. RESULTS: In paired analyses of twins discordant for SLE restricted to the gene promoter and start region, we identified 55, 327, 247, and 1,628 genes with differentially methylated CpGs in CD4+ T cells, monocytes, granulocytes, and B cells, respectively. All cell types displayed marked hypomethylation in interferon-regulated genes, such as IFI44L, PARP9, and IFITM1, which was more pronounced in twins who experienced a disease flare within the past 2 years. In contrast to what was observed in the other cell types, differentially methylated CpGs in B cells were predominantly hypermethylated, and the most important upstream regulators included TNF and EP300. CONCLUSION: Hypomethylation of interferon-regulated genes occurs in all major cellular compartments in SLE-affected twins. The observed B cell promoter hypermethylation is a novel finding with potential significance in SLE pathogenesis.


Subject(s)
B-Lymphocytes/metabolism , DNA Methylation/genetics , Interferons/genetics , Lupus Erythematosus, Systemic/genetics , Adult , Aged , Case-Control Studies , Epigenesis, Genetic , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Promoter Regions, Genetic/genetics , Symptom Flare Up , Twins, Monozygotic , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL