Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 103
1.
Res Sq ; 2024 May 20.
Article En | MEDLINE | ID: mdl-38826463

Traditional feature dimension reduction methods have been widely used to uncover biological patterns or structures within individual spatial transcriptomics data. However, these methods are designed to yield feature representations that emphasize patterns or structures with dominant high variance, such as the normal tissue spatial pattern in a precancer setting. Consequently, they may inadvertently overlook patterns of interest that are potentially masked by these high-variance structures. Herein we present our graph contrastive feature representation method called CoCo-ST (Comparing and Contrasting Spatial Transcriptomics) to overcome this limitation. By incorporating a background data set representing normal tissue, this approach enhances the identification of interesting patterns in a target data set representing precancerous tissue. Simultaneously, it mitigates the influence of dominant common patterns shared by the background and target data sets. This enables discerning biologically relevant features crucial for capturing tissue-specific patterns, a capability we showcased through the analysis of serial mouse precancerous lung tissue samples.

2.
Mol Cancer ; 23(1): 115, 2024 May 30.
Article En | MEDLINE | ID: mdl-38811992

BACKGROUND: We explored potential predictive biomarkers of immunotherapy response in patients with extensive-stage small-cell lung cancer (ES-SCLC) treated with durvalumab (D) + tremelimumab (T) + etoposide-platinum (EP), D + EP, or EP in the randomized phase 3 CASPIAN trial. METHODS: 805 treatment-naïve patients with ES-SCLC were randomized (1:1:1) to receive D + T + EP, D + EP, or EP. The primary endpoint was overall survival (OS). Patients were required to provide an archived tumor tissue block (or ≥ 15 newly cut unstained slides) at screening, if these samples existed. After assessment for programmed cell death ligand-1 expression and tissue tumor mutational burden, residual tissue was used for additional molecular profiling including by RNA sequencing and immunohistochemistry. RESULTS: In 182 patients with transcriptional molecular subtyping, OS with D ± T + EP was numerically highest in the SCLC-inflamed subtype (n = 10, median 24.0 months). Patients derived benefit from immunotherapy across subtypes; thus, additional biomarkers were investigated. OS benefit with D ± T + EP versus EP was greater with high versus low CD8A expression/CD8 cell density by immunohistochemistry, but with no additional benefit with D + T + EP versus D + EP. OS benefit with D + T + EP versus D + EP was associated with high expression of CD4 (median 25.9 vs. 11.4 months) and antigen-presenting and processing machinery (25.9 vs. 14.6 months) and MHC I and II (23.6 vs. 17.3 months) gene signatures, and with higher MHC I expression by immunohistochemistry. CONCLUSIONS: These findings demonstrate the tumor microenvironment is important in mediating better outcomes with D ± T + EP in ES-SCLC, with canonical immune markers associated with hypothesized immunotherapy mechanisms of action defining patient subsets that respond to D ± T. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03043872.


Biomarkers, Tumor , Immunotherapy , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/immunology , Small Cell Lung Carcinoma/therapy , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/mortality , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lung Neoplasms/metabolism , Female , Male , Immunotherapy/methods , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Middle Aged , Aged , Antibodies, Monoclonal/therapeutic use , Treatment Outcome , Neoplasm Staging , Antibodies, Monoclonal, Humanized/therapeutic use , Prognosis , Adult
3.
Res Sq ; 2024 May 17.
Article En | MEDLINE | ID: mdl-38798352

Integrative multi-omics analysis provides deeper insight and enables better and more realistic modeling of the underlying biology and causes of diseases than does single omics analysis. Although several integrative multi-omics analysis methods have been proposed and demonstrated promising results in integrating distinct omics datasets, inconsistent distribution of the different omics data, which is caused by technology variations, poses a challenge for paired integrative multi-omics methods. In addition, the existing discriminant analysis-based integrative methods do not effectively exploit correlation and consistent discriminant structures, necessitating a compromise between correlation and discrimination in using these methods. Herein we present PAN-omics Discriminant Analysis (PANDA), a joint discriminant analysis method that seeks omics-specific discriminant common spaces by jointly learning consistent discriminant latent representations for each omics. PANDA jointly maximizes between-class and minimizes within-class omics variations in a common space and simultaneously models the relationships among omics at the consistency representation and cross-omics correlation levels, overcoming the need for compromise between discrimination and correlation as with the existing integrative multi-omics methods. Because of the consistency representation learning incorporated into the objective function of PANDA, this method seeks a common discriminant space to minimize the differences in distributions among omics, can lead to a more robust latent representations than other methods, and is against the inconsistency of the different omics. We compared PANDA to 10 other state-of-the-art multi-omics data integration methods using both simulated and real-world multi-omics datasets and found that PANDA consistently outperformed them while providing meaningful discriminant latent representations. PANDA is implemented using both R and MATLAB, with codes available at https://github.com/WuLabMDA/PANDA.

4.
JTO Clin Res Rep ; 5(2): 100623, 2024 Feb.
Article En | MEDLINE | ID: mdl-38357092

Introduction: NSCLC transformation to SCLC has been best characterized with EGFR-mutant NSCLC, with emerging case reports seen in ALK, RET, and KRAS-altered NSCLC. Previous reports revealed transformed SCLC from EGFR-mutant NSCLC portends very poor prognosis and lack effective treatment. Genomic analyses revealed TP53 and RB1 loss of function increase the risk of SCLC transformation. Little has been reported on the detailed clinicogenomic characteristics and potential therapeutic targets for this patient population. Methods: In this study, we conducted a single-center retrospective analysis of clinical and genomic characteristics of patients with EGFR-mutant NSCLC transformed to SCLC. Demographic data, treatment course, and clinical molecular testing reports were extracted from electronic medical records. Kaplan-Meier analyses were used to estimate survival outcomes. Next generation sequencing-based assays was used to identify EGFR and co-occurring genetic alterations in tissue or plasma before and after SCLC transformation. Single-cell RNA sequencing (scRNA-seq) was performed on a patient-derived-xenograft model generated from a patient with EGFR-NSCLC transformed SCLC tumor. Results: A total of 34 patients were identified in our study. Median age at initial diagnosis was 58, and median time to SCLC transformation was 24.2 months. 68% were female and 82% were never smokers. 79% of patients were diagnosed as stage IV disease, and over half had brain metastases at baseline. Median overall survival of the entire cohort was 38.3 months from initial diagnoses and 12.4 months from time of SCLC transformation. Most patients harbored EGFR exon19 deletions as opposed to exon21 L858R alteration. Continuing EGFR tyrosine kinase inhibitor post-transformation did not improve overall survival compared with those patients where tyrosine kinase inhibitor was stopped in our cohort. In the 20 paired pretransformed and post-transformed patient samples, statistically significant enrichment was seen with PIK3CA alterations (p = 0.04) post-transformation. Profiling of longitudinal liquid biopsy samples suggest emergence of SCLC genetic alterations before biopsy-proven SCLC, as shown by increasing variant allele frequency of TP53, RB1, PIK3CA alterations. ScRNA-seq revealed potential therapeutic targets including DLL3, CD276 (B7-H3) and PTK7 were widely expressed in transformed SCLC. Conclusions: SCLC transformation is a potential treatment resistance mechanism in driver-mutant NSCLC. In our cohort of 34 EGFR-mutant NSCLC, poor prognosis was observed after SCLC transformation. Clinicogenomic analyses of paired and longitudinal samples identified genomic alterations emerging post-transformation and scRNA-seq reveal potential therapeutic targets in this population. Further studies are needed to rigorously validate biomarkers and therapeutic targets for this patient population.

5.
Cancer Cell ; 42(3): 429-443.e4, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38366589

Atezolizumab (anti-PD-L1), combined with carboplatin and etoposide (CE), is now a standard of care for extensive-stage small-cell lung cancer (ES-SCLC). A clearer understanding of therapeutically relevant SCLC subsets could identify rational combination strategies and improve outcomes. We conduct transcriptomic analyses and non-negative matrix factorization on 271 pre-treatment patient tumor samples from IMpower133 and identify four subsets with general concordance to previously reported SCLC subtypes (SCLC-A, -N, -P, and -I). Deeper investigation into the immune heterogeneity uncovers two subsets with differing neuroendocrine (NE) versus non-neuroendocrine (non-NE) phenotypes, demonstrating immune cell infiltration hallmarks. The NE tumors with low tumor-associated macrophage (TAM) but high T-effector signals demonstrate longer overall survival with PD-L1 blockade and CE versus CE alone than non-NE tumors with high TAM and high T-effector signal. Our study offers a clinically relevant approach to discriminate SCLC patients likely benefitting most from immunotherapies and highlights the complex mechanisms underlying immunotherapy responses.


Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Lung Neoplasms/genetics , Immune Checkpoint Inhibitors/therapeutic use , Small Cell Lung Carcinoma/genetics , Carboplatin/therapeutic use , Etoposide/therapeutic use , Immunotherapy
6.
Cancer Cell ; 42(2): 225-237.e5, 2024 02 12.
Article En | MEDLINE | ID: mdl-38278149

Small cell lung cancer (SCLC) is an aggressive malignancy composed of distinct transcriptional subtypes, but implementing subtyping in the clinic has remained challenging, particularly due to limited tissue availability. Given the known epigenetic regulation of critical SCLC transcriptional programs, we hypothesized that subtype-specific patterns of DNA methylation could be detected in tumor or blood from SCLC patients. Using genomic-wide reduced-representation bisulfite sequencing (RRBS) in two cohorts totaling 179 SCLC patients and using machine learning approaches, we report a highly accurate DNA methylation-based classifier (SCLC-DMC) that can distinguish SCLC subtypes. We further adjust the classifier for circulating-free DNA (cfDNA) to subtype SCLC from plasma. Using the cfDNA classifier (cfDMC), we demonstrate that SCLC phenotypes can evolve during disease progression, highlighting the need for longitudinal tracking of SCLC during clinical treatment. These data establish that tumor and cfDNA methylation can be used to identify SCLC subtypes and might guide precision SCLC therapy.


Cell-Free Nucleic Acids , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , DNA Methylation , Cell-Free Nucleic Acids/genetics , Epigenesis, Genetic , Biomarkers, Tumor/genetics
7.
J Thorac Oncol ; 19(3): 500-506, 2024 Mar.
Article En | MEDLINE | ID: mdl-38012986

INTRODUCTION: Amivantamab-vmjw (amivantamab) is a bispecific EGFR/MET antibody approved for patients with advanced NSCLC with EGFR exon 20 insertion mutations, after prior therapy. Nevertheless, the benefits and safety of amivantamab in other EGFR-mutant lung cancer, with or without osimertinib, and with concurrent radiation therapy, are less known. METHODS: We queried the MD Anderson Lung Cancer GEMINI, Fred Hutchinson Cancer Research Center, University of California Davis Comprehensive Cancer Center, and Stanford Cancer Center's database for patients with EGFR-mutant NSCLC treated with amivantamab, not on a clinical trial. The data analyzed included initial response, duration of treatment, and concomitant radiation safety in overall population and prespecified subgroups. RESULTS: A total of 61 patients received amivantamab. Median age was 65 (31-81) years old; 72.1% were female; and 77% were patients with never smoking history. Median number of prior lines of therapies was four. On the basis of tumor's EGFR mutation, 39 patients were in the classical mutation cohort, 15 patients in the exon 20 cohort, and seven patients in the atypical cohort. There were 37 patients (58.7%) who received amivantamab concomitantly with osimertinib and 25 patients (39.1%) who received concomitant radiation. Furthermore, 54 patients were assessable for response in the overall population; 19 patients (45.2%) had clinical response and disease control rate (DCR) was 64.3%. In the classical mutation cohort of the 33 assessable patients, 12 (36.4%) had clinical response and DCR was 48.5%. In the atypical mutation cohort, six of the seven patients (85.7%) had clinical response and DCR was 100%. Of the 13 assessable patients in the exon 20 cohort, five patients (35.7%) had clinical response and DCR was 64.3%. Adverse events reported with amivantamab use were similar as previously described in product labeling. No additional toxicities were noted when amivantamab was given with radiation with or without osimertinib. CONCLUSIONS: Our real-world multicenter analysis revealed that amivantamab is a potentially effective treatment option for patients with EGFR mutations outside of exon 20 insertion mutations. The combination of osimertinib with amivantamab is safe and feasible. Radiation therapy also seems safe when administered sequentially or concurrently with amivantamab.


Acrylamides , Antibodies, Bispecific , Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Indoles , Lung Neoplasms , Pyrimidines , Humans , Female , Aged , Adult , Middle Aged , Aged, 80 and over , Male , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/chemically induced , Antineoplastic Agents/therapeutic use , ErbB Receptors/genetics , ErbB Receptors/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/chemically induced , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Mutation , Protein Kinase Inhibitors/therapeutic use
8.
J Clin Pharmacol ; 64(3): 362-370, 2024 Mar.
Article En | MEDLINE | ID: mdl-37694295

With the promise of a potentially single-dose curative regimen, CAR-T cell therapies have brought a paradigm shift in the treatment and management of hematological malignancies with 6 approved products in the USA. However, there are no approved CAR-T cell therapies for solid tumors. Herein, we report the clinical pharmacology profile of AMG 119, the first CAR-T cell therapy targeting delta-like ligand 3 (DLL3), in patients with relapsed/refractory (R/R) small cell lung cancer (SCLC). AMG 119 demonstrated robust cellular expansion with long-lasting cell persistence and a favorable exposure-response relationship. AMG 119 has been demonstrated to be clinically safe and well tolerated at the doses tested, with no dose-limiting toxicities (DLTs) reported. This is the first publication of the clinical pharmacology profile of a CAR-T cell therapy in SCLC, with encouraging cellular kinetics data supporting the potential for CAR-T cell therapy in solid tumor space.


Lung Neoplasms , Pharmacology, Clinical , Receptors, Chimeric Antigen , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/pathology , Lung Neoplasms/drug therapy , Ligands , Neoplasm Recurrence, Local , Chronic Disease , Cell- and Tissue-Based Therapy , Membrane Proteins/therapeutic use , Intracellular Signaling Peptides and Proteins
9.
Front Immunol ; 14: 1322818, 2023.
Article En | MEDLINE | ID: mdl-38152395

The roles of preexisting auto-reactive antibodies in immune-related adverse events (irAEs) associated with immune checkpoint inhibitor therapy are not well defined. Here, we analyzed plasma samples longitudinally collected at predefined time points and at the time of irAEs from 58 patients with immunotherapy naïve metastatic non-small cell lung cancer treated on clinical protocol with ipilimumab and nivolumab. We used a proteomic microarray system capable of assaying antibody reactivity for IgG and IgM fractions against 120 antigens for systemically evaluating the correlations between auto-reactive antibodies and certain organ-specific irAEs. We found that distinct patterns of auto-reactive antibodies at baseline were associated with the subsequent development of organ-specific irAEs. Notably, ACHRG IgM was associated with pneumonitis, anti-cytokeratin 19 IgM with dermatitis, and anti-thyroglobulin IgG with hepatitis. These antibodies merit further investigation as potential biomarkers for identifying high-risk populations for irAEs and/or monitoring irAEs during immunotherapy treatment. Trial registration: ClinicalTrials.gov identifier: NCT03391869.


Carcinoma, Non-Small-Cell Lung , Immune System Diseases , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/pathology , Proteomics , Immunoglobulin G/therapeutic use , Immunoglobulin M/therapeutic use
10.
Lung Cancer ; 186: 107418, 2023 12.
Article En | MEDLINE | ID: mdl-37931445

OBJECTIVES: In the Phase I/III IMpower133 study, first-line atezolizumab plus carboplatin and etoposide (CP/ET) treatment for extensive-stage small cell lung cancer (ES-SCLC) significantly improved overall survival (OS) and progression-free survival versus placebo plus CP/ET. We explored patient and disease characteristics associated with long-term survival in IMpower133, and associations of differential gene expression and SCLC-A (ASCL1-driven), SCLC-N (NEUROD1-driven), SCLC-P (POU2F3-driven), and SCLC-inflamed (SCLC-I) transcriptional subtypes with long-term survival. MATERIALS AND METHODS: Patients with previously untreated ES-SCLC were randomized 1:1 to four 21-day cycles of CP/ET with atezolizumab or placebo. Long-term survivors (LTS) were defined as patients who lived ≥ 18 months post randomization. A generalized linear model was used to evaluate the odds of living ≥ 18 months. Differential gene expression was analyzed using RNA-sequencing data in LTS and non-LTS. OS was assessed by T-effector and B-cell gene signature expression. Distribution of SCLC transcriptional subtypes was assessed in LTS and non-LTS. RESULTS: More LTS were in the atezolizumab arm (34%) than in the placebo arm (20%). The odds ratio for living ≥ 18 months in the atezolizumab arm versus the placebo arm was 2.1 (P < 0.03). Enhanced immune-related signaling was seen in LTS in both arms. Exploratory OS analyses showed atezolizumab treatment benefit versus placebo across T-effector and B-cell gene signature expression subgroups. A higher proportion of LTS than non-LTS in both arms had the SCLC-I subtype; this difference was particularly pronounced in the atezolizumab arm. CONCLUSION: These exploratory analyses suggest that long-term survival is more likely with atezolizumab than placebo in ES-SCLC, confirming the treatment benefit of the IMpower133 regimen. CLINICALTRIAL: gov Identifier: NCT02763579.


Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Carboplatin , Etoposide , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Survivors , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
11.
Cancer Cell ; 41(9): 1535-1540, 2023 09 11.
Article En | MEDLINE | ID: mdl-37699331

The understanding of small cell lung cancer (SCLC) biology has increased dramatically in recent years, but the processes that allow SCLC to progress rapidly remain poorly understood. Here, we advocate the integration of rapid autopsies and preclinical models into SCLC research as a comprehensive strategy with the potential to revolutionize current treatment paradigms.


Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Autopsy , Small Cell Lung Carcinoma/genetics , Lung Neoplasms/genetics
12.
CA Cancer J Clin ; 73(6): 620-652, 2023.
Article En | MEDLINE | ID: mdl-37329269

Small cell lung cancer (SCLC) is characterized by rapid growth and high metastatic capacity. It has strong epidemiologic and biologic links to tobacco carcinogens. Although the majority of SCLCs exhibit neuroendocrine features, an important subset of tumors lacks these properties. Genomic profiling of SCLC reveals genetic instability, almost universal inactivation of the tumor suppressor genes TP53 and RB1, and a high mutation burden. Because of early metastasis, only a small fraction of patients are amenable to curative-intent lung resection, and these individuals require adjuvant platinum-etoposide chemotherapy. Therefore, the vast majority of patients are currently being treated with chemoradiation with or without immunotherapy. In patients with disease confined to the chest, standard therapy includes thoracic radiotherapy and concurrent platinum-etoposide chemotherapy. Patients with metastatic (extensive-stage) disease are treated with a combination of platinum-etoposide chemotherapy plus immunotherapy with an anti-programmed death-ligand 1 monoclonal antibody. Although SCLC is initially very responsive to platinum-based chemotherapy, these responses are transient because of the development of drug resistance. In recent years, the authors have witnessed an accelerating pace of biologic insights into the disease, leading to the redefinition of the SCLC classification scheme. This emerging knowledge of SCLC molecular subtypes has the potential to define unique therapeutic vulnerabilities. Synthesizing these new discoveries with the current knowledge of SCLC biology and clinical management may lead to unprecedented advances in SCLC patient care. Here, the authors present an overview of multimodal clinical approaches in SCLC, with a special focus on illuminating how recent advancements in SCLC research could accelerate clinical development.


Biological Products , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/diagnosis , Small Cell Lung Carcinoma/therapy , Lung Neoplasms/diagnosis , Lung Neoplasms/therapy , Etoposide/therapeutic use , Combined Modality Therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biological Products/therapeutic use
13.
Clin Cancer Res ; 29(16): 3237-3249, 2023 08 15.
Article En | MEDLINE | ID: mdl-37289191

PURPOSE: Therapeutic resistance to frontline therapy develops rapidly in small cell lung cancer (SCLC). Treatment options are also limited by the lack of targetable driver mutations. Therefore, there is an unmet need for developing better therapeutic strategies and biomarkers of response. Aurora kinase B (AURKB) inhibition exploits an inherent genomic vulnerability in SCLC and is a promising therapeutic approach. Here, we identify biomarkers of response and develop rational combinations with AURKB inhibition to improve treatment efficacy. EXPERIMENTAL DESIGN: Selective AURKB inhibitor AZD2811 was profiled in a large panel of SCLC cell lines (n = 57) and patient-derived xenograft (PDX) models. Proteomic and transcriptomic profiles were analyzed to identify candidate biomarkers of response and resistance. Effects on polyploidy, DNA damage, and apoptosis were measured by flow cytometry and Western blotting. Rational drug combinations were validated in SCLC cell lines and PDX models. RESULTS: AZD2811 showed potent growth inhibitory activity in a subset of SCLC, often characterized by, but not limited to, high cMYC expression. Importantly, high BCL2 expression predicted resistance to AURKB inhibitor response in SCLC, independent of cMYC status. AZD2811-induced DNA damage and apoptosis were suppressed by high BCL2 levels, while combining AZD2811 with a BCL2 inhibitor significantly sensitized resistant models. In vivo, sustained tumor growth reduction and regression was achieved even with intermittent dosing of AZD2811 and venetoclax, an FDA-approved BCL2 inhibitor. CONCLUSIONS: BCL2 inhibition overcomes intrinsic resistance and enhances sensitivity to AURKB inhibition in SCLC preclinical models.


Antineoplastic Agents , Aurora Kinase B , Lung Neoplasms , Proto-Oncogene Proteins c-bcl-2 , Small Cell Lung Carcinoma , Humans , Antineoplastic Agents/therapeutic use , Apoptosis , Aurora Kinase B/antagonists & inhibitors , Cell Line, Tumor , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Proteomics , Proto-Oncogene Proteins c-bcl-2/drug effects , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Xenograft Model Antitumor Assays
14.
Crit Rev Oncol Hematol ; 186: 104017, 2023 Jun.
Article En | MEDLINE | ID: mdl-37150311

Therapeutic options for patients with relapsed SCLC are limited, and the prognosis in this setting remains poor. While clinical outcomes for frontline treatment have modestly improved with the introduction of immunotherapy, treatment in the second-line setting persists almost unchanged. In this review, current treatment options and recent advances in molecular biology are described. Emerging therapeutic options in this setting, and potential strategies to improve clinical outcomes of these patients are also addressed.


Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Lung Neoplasms/therapy , Lung Neoplasms/drug therapy , Neoplasm Recurrence, Local/drug therapy , Small Cell Lung Carcinoma/drug therapy , Immunotherapy , Prognosis
15.
Mol Cell ; 83(5): 660-680, 2023 03 02.
Article En | MEDLINE | ID: mdl-36669489

Targeted therapy and immunotherapy have revolutionized cancer treatment. However, the ability of cancer to evade the immune system remains a major barrier for effective treatment. Related to this, several targeted DNA-damage response inhibitors (DDRis) are being tested in the clinic and have been shown to potentiate anti-tumor immune responses. Seminal studies have shown that these agents are highly effective in a pan-cancer class of tumors with genetic defects in key DNA repair genes such as BRCA1/2, BRCA-related genes, ataxia telangiectasia mutated (ATM), and others. Here, we review the molecular consequences of targeted DDR inhibition, from tumor cell death to increased engagement of the anti-tumor immune response. Additionally, we discuss mechanistic and clinical rationale for pairing targeted DDRis with immunotherapy for enhanced tumor control. We also review biomarkers for patient selection and promising new immunotherapy approaches poised to form the foundation of next-generation DDRi and immunotherapy combinations.


DNA Damage , Neoplasms , Humans , Neoplasms/genetics , DNA Repair , Ataxia Telangiectasia Mutated Proteins/genetics
16.
Lung Cancer ; 174: 112-117, 2022 Dec.
Article En | MEDLINE | ID: mdl-36371941

INTRODUCTION: The phase II DETERRED trial assessed the safety and efficacy of consolidation and concurrent immunotherapy with chemoradiation in unresectable locally advanced non-small cell lung cancer. We present updated efficacy analysis of this trial. METHODS: The trial was conducted in 2 parts with patients in part 1 (n = 10) receiving chemoradiation with consolidation atezolizumab, while patients in part 2 (n = 30) received concurrent and consolidation atezolizumab. Progression-free survival (PFS), time to second progression (PFS2), and overall survival (OS) were assessed using Kaplan-Meier analysis. Subset analyses were performed by programmed cell death ligand-1 (PD-L1) status and targetable driver oncogene mutation status. RESULTS: At a median follow-up of 39.2 months, the median PFS for part 1 was 18.9 months and 15.1 months for part 2. Median OS for part 1 was 26.5 months and was not reached for part 2. For the cohort, 3-year OS was 53.8%, while 4-year OS was 47.4%. Patients with targetable driver oncogene mutations had a median PFS of 9.4 months and OS of not reached compared to 16.6 months (HR: 3.49, p = 0.02) and 26.9 months (HR: 0.40, p = 0.12) respectively compared to those without targetable driver oncogene mutations. Patients with PD-L1 < 1% had median PFS of 11.0 months and OS of 26.5 months compared to 27.4 months (HR: 2.01, p = 0.10) and not reached (HR: 1.49, p = 0.41) respectively for those with PD-L1 ≥ 1%. CONCLUSIONS: In the DETERRED trial, chemoradiation with concurrent and/or consolidative atezolizumab led to comparable efficacy as consolidative durvalumab in the PACIFIC trial. The presence of targetable driver oncogene mutations led to worse PFS, while PD-L1 < 1% trended to worse PFS.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Immunotherapy , Chemoradiotherapy
17.
Oncologist ; 27(11): 940-951, 2022 11 03.
Article En | MEDLINE | ID: mdl-35983951

INTRODUCTION: Neuroendocrine neoplasms (NEN) are heterogeneous malignancies that can arise at almost any anatomical site and are classified as biologically distinct well-differentiated neuroendocrine tumors (NET) and poorly differentiated neuroendocrine carcinomas (NEC). Current systemic therapies for advanced disease, including targeted therapies, chemotherapy, and immunotherapy, are associated with limited duration of response. New therapeutic targets are needed. One promising target is delta-like ligand 3 (DLL3), an inhibitory ligand of the Notch receptor whose overexpression on the surface of NEN is associated with tumorigenesis. METHODS: This article is a narrative review that highlights the role of DLL3 in NEN progression and prognosis, the potential for therapeutic targeting of DLL3, and ongoing studies of DLL3-targeting therapies. Classification, incidence, pathogenesis, and current management of NEN are reviewed to provide biological context and illustrate the unmet clinical needs. DISCUSSION: DLL3 is overexpressed in many NENs, implicated in tumor progression, and is typically associated with poor clinical outcomes, particularly in patients with NEC. Targeted therapies using DLL3 as a homing beacon for cytotoxic activity mediated via several different mechanisms (eg, antibody-drug conjugates, T-cell engager molecules, CAR-Ts) have shown promising clinical activity in small-cell lung cancer (SCLC). DLL3 may be a clinically actionable target across NEN. CONCLUSIONS: Current treatment options for NEN do not provide sustained responses. DLL3 is expressed on the cell surface of many NEN types and is associated with poor clinical outcomes. Initial clinical studies targeting DLL3 therapeutically in SCLC have been promising, and additional studies are expanding this approach to the broader group of NEN.


Carcinoma, Neuroendocrine , Lung Neoplasms , Neuroendocrine Tumors , Small Cell Lung Carcinoma , Humans , Lung Neoplasms/drug therapy , Ligands , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Small Cell Lung Carcinoma/drug therapy , Neuroendocrine Tumors/drug therapy , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Carcinoma, Neuroendocrine/pathology
18.
JCO Clin Cancer Inform ; 6: e2200040, 2022 07.
Article En | MEDLINE | ID: mdl-35944232

PURPOSE: Advances in biological measurement technologies are enabling large-scale studies of patient cohorts across multiple omics platforms. Holistic analysis of these data can generate actionable insights for translational research and necessitate new approaches for data integration and mining. METHODS: We present a novel approach for integrating data across platforms on the basis of the shared nearest neighbors algorithm and use it to create a network of multiplatform data from the immunogenomic profiling of non-small-cell lung cancer project. RESULTS: Benchmarking demonstrates that the shared nearest neighbors-based network approach outperforms a traditional gene-gene network in capturing established interactions while providing new ones on the basis of the interplay between measurements from different platforms. When used to examine patient characteristics of interest, our approach provided signatures associated with and new leads related to recurrence and TP53 oncogenotype. CONCLUSION: The network developed offers an unprecedented, holistic view into immunogenomic profiling of non-small-cell lung cancer, which can be explored through the accompanying interactive browser that we built.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/genetics , Cluster Analysis , Gene Expression Profiling , Humans , Lung Neoplasms/genetics , Software
19.
Cancer Cell ; 40(7): 754-767.e6, 2022 07 11.
Article En | MEDLINE | ID: mdl-35820397

We report a phase II study of 50 advanced non-small cell lung cancer (NSCLC) patients with point mutations or insertions in EGFR exon 20 treated with poziotinib (NCT03066206). The study achieved its primary endpoint, with confirmed objective response rates (ORRs) of 32% and 31% by investigator and blinded independent review, respectively, with a median progression-free survival of 5.5 months. Using preclinical studies, in silico modeling, and molecular dynamics simulations, we found that poziotinib sensitivity was highly dependent on the insertion location, with near-loop insertions (amino acids A767 to P772) being more sensitive than far-loop insertions, an observation confirmed clinically with ORRs of 46% and 0% observed in near versus far-loop, respectively (p = 0.0015). Putative mechanisms of acquired resistance included EGFR T790M, MET amplifications, and epithelial-to-mesenchymal transition (EMT). Our data demonstrate that poziotinib is active in EGFR exon 20-mutant NSCLC, although this activity is influenced by insertion location.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm/genetics , ErbB Receptors/genetics , Exons/genetics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Quinazolines , Treatment Outcome
20.
J Exp Clin Cancer Res ; 41(1): 172, 2022 May 11.
Article En | MEDLINE | ID: mdl-35546239

BACKGROUND: Lung cancer is the leading cause of cancer death, partially owing to its extensive heterogeneity. The analysis of intertumor heterogeneity has been limited by an inability to concurrently obtain tissue from synchronous metastases unaltered by multiple prior lines of therapy. METHODS: In order to study the relationship between genomic, epigenomic and T cell repertoire heterogeneity in a rare autopsy case from a 32-year-old female never-smoker with left lung primary late-stage lung adenocarcinoma (LUAD), we did whole-exome sequencing (WES), DNA methylation and T cell receptor (TCR) sequencing to characterize the immunogenomic landscape of one primary and 19 synchronous metastatic tumors. RESULTS: We observed heterogeneous mutation, methylation, and T cell patterns across distinct metastases. Only TP53 mutation was detected in all tumors suggesting an early event while other cancer gene mutations were later events which may have followed subclonal diversification. A set of prevalent T cell clonotypes were completely excluded from left-side thoracic tumors indicating distinct T cell repertoire profiles between left-side and non left-side thoracic tumors. Though a limited number of predicted neoantigens were shared, these were associated with homology of the T cell repertoire across metastases. Lastly, ratio of methylated neoantigen coding mutations was negatively associated with T-cell density, richness and clonality, suggesting neoantigen methylation may partially drive immunosuppression. CONCLUSIONS: Our study demonstrates heterogeneous genomic and T cell profiles across synchronous metastases and how restriction of unique T cell clonotypes within an individual may differentially shape the genomic and epigenomic landscapes of synchronous lung metastases.


Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Adenocarcinoma/genetics , Adenocarcinoma of Lung/genetics , Adult , Female , Humans , Lung Neoplasms/pathology , Mutation , Exome Sequencing
...