Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Rep Med ; 5(5): 101567, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38744277

ABSTRACT

Bispecific T cell engagers (TCEs) show promising clinical efficacy in blood tumors, but their application to solid tumors remains challenging. Here, we show that Fc-fused IL-7 (rhIL-7-hyFc) changes the intratumoral CD8 T cell landscape, enhancing the efficacy of TCE immunotherapy. rhIL-7-hyFc induces a dramatic increase in CD8 tumor-infiltrating lymphocytes (TILs) in various solid tumors, but the majority of these cells are PD-1-negative tumor non-responsive bystander T cells. However, they are non-exhausted and central memory-phenotype CD8 T cells with high T cell receptor (TCR)-recall capacity that can be triggered by tumor antigen-specific TCEs to acquire tumoricidal activity. Single-cell transcriptome analysis reveals that rhIL-7-hyFc-induced bystander CD8 TILs transform into cycling transitional T cells by TCE redirection with decreased memory markers and increased cytotoxic molecules. Notably, TCE treatment has no major effect on tumor-reactive CD8 TILs. Our results suggest that rhIL-7-hyFc treatment promotes the antitumor efficacy of TCE immunotherapy by increasing TCE-sensitive bystander CD8 TILs in solid tumors.


Subject(s)
CD8-Positive T-Lymphocytes , Immunotherapy , Interleukin-7 , Lymphocytes, Tumor-Infiltrating , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/drug effects , CD8-Positive T-Lymphocytes/immunology , Interleukin-7/immunology , Interleukin-7/metabolism , Humans , Animals , Immunotherapy/methods , Mice , Neoplasms/immunology , Neoplasms/therapy , Cell Line, Tumor , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Bystander Effect/immunology
2.
Antib Ther ; 7(2): 105-113, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38566969

ABSTRACT

Antibody-based therapeutics (ABTs), including monoclonal/polyclonal antibodies and fragment crystallizable region (Fc)-fusion proteins, are increasingly used in disease treatment, driving the global market growth. Understanding the pharmacokinetic (PK) properties of ABTs is crucial for their clinical effectiveness. This study investigated the PK profile and tissue distribution of efineptakin alfa, a long-acting recombinant human interleukin-7 (rhIL-7-hyFc), using enzyme-linked immunosorbent assay (ELISA) and accelerator mass spectrometry (AMS). Totally, four rats were injected intramuscularly with 1 mg/kg of rhIL-7-hyFc containing 14C-rhIL-7-hyFc, which was prepared via reductive methylation. Serum total radioactivity (TRA) and serum rhIL-7-hyFc concentrations were quantified using AMS and ELISA, respectively. The TRA concentrations in organs were determined by AMS. Serum TRA peaked at 10 hours with a terminal half-life of 40 hours. The rhIL-7-hyFc exhibited a mean peak concentration at around 17 hours and a rapid elimination with a half-life of 12.3 hours. Peak concentration and area under the curve of TRA were higher than those of rhIL-7-hyFc. Tissue distribution analysis showed an elevated TRA concentrations in lymph nodes, kidneys, and spleen, indicating rhIL-7-hyFc's affinity for these organs. The study also simulated the positions of 14C labeling in rhIL-7-hyFc, identifying specific residues in the fragment of rhIL-7 portion, and provided the explanation of distinct analytes targeted by each method. Combining ELISA and AMS provided advantages by offering sensitivity and specificity for quantification as well as enabling the identification of analyte forms. The integrated use of ELISA and AMS offers valuable insights for the development and optimization of ABT.

3.
Sci Rep ; 11(1): 12004, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099775

ABSTRACT

Human granulocyte colony-stimulating factor (G-CSF, this study used Fc-fused recombinant G-CSF; GX-G3) is an important glycoprotein that stimulates the proliferation of granulocytes and white blood cells. Thus, G-CSF treatment has been considered as a crucial regimen to accelerate recovery from chemotherapy-induced neutropenia in cancer patients suffering from non-myeloid malignancy or acute myeloid leukemia. Despite the therapeutic advantages of G-CSF treatment, an assessment of its immunogenicity must be performed to determine whether the production of anti-G-CSF antibodies causes immune-related disorders. We optimized and validated analytical tools by adopting validation parameters for immunogenicity assessment. Using these validated tools, we analyzed serum samples from rats and monkeys injected subcutaneously with GX-G3 (1, 3 or 10 mg/kg once a week for 4 weeks followed by a 4-week recovery period) to determine immunogenicity response and toxicokinetic parameters with serum concentration of GX-G3. Several rats and monkeys were determined to be positive for anti-GX-G3 antibodies. Moreover, the immunogenicity response of GX-G3 was lower in monkeys than in rats, which was relevant to show less inhibition of toxicokinetic profiles in monkeys, at least 1 mg/kg administrated group, compared to rats. These results suggested the establishment and validation for analyzing anti-GX-G3 antibodies and measurement of serum levels of GX-G3 and anti-GX-G3 antibodies, which was related with toxicokinetic profiles. Taken together, this study provides immunogenicity assessment which is closely implicated with toxicokinetic study of GX-G3 in 4-week repeated administrated toxicological studies.


Subject(s)
Antibodies/blood , Granulocyte Colony-Stimulating Factor/immunology , Immunoglobulin Fc Fragments/immunology , Immunologic Factors/administration & dosage , Recombinant Fusion Proteins/immunology , Animals , Drug Evaluation, Preclinical/methods , Enzyme-Linked Immunosorbent Assay , Female , Gene Expression , Granulocyte Colony-Stimulating Factor/genetics , Humans , Immunoglobulin Fc Fragments/genetics , Immunologic Factors/genetics , Injections, Subcutaneous , Macaca fascicularis , Male , Rats , Rats, Sprague-Dawley , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/genetics
4.
Diabetes Obes Metab ; 22(8): 1455-1468, 2020 08.
Article in English | MEDLINE | ID: mdl-32314505

ABSTRACT

AIM: To evaluate the pharmacokinetic and pharmacodynamic properties of a novel glycosylated Fc-fused glucagon-like peptide-1(GLP-1-gFc) receptor agonist with distinctive receptor binding affinity, designed to improve in vivo stability and safety relative to the commercial GLP-1 analogue dulaglutide, and assess its safety profile and pharmacokinetics in healthy humans. MATERIALS AND METHODS: We constructed GLP-1-gFc and determined its binding affinity and potency using in vitro instrumental and cell-based analyses followed by in vivo comparison of the glucose-lowering and gastrointestinal side effects between GLP-1-gFc and dulaglutide. A phase 1 clinical trial was conducted to confirm the efficacy and safety profile of GLP-1-gFc. RESULTS: GLP-1-gFc showed 10-fold less binding affinity and 4-fold less potency than dulaglutide in in vitro. A potency-adjusted dose delayed HbA1c increase comparable with that of dulaglutide (Change for 6 weeks: 2.4 mg/kg GLP-1-gFc, 4.34 ± 0.40 vs. 0.6 mg/kg dulaglutide, 4.26 ± 0.22; n.s.). However, the equivalent efficacy dose and higher dose did not induce malaise-related responses (blueberry bar consumption, g/mouse: 2.4 mg/kg GLP-1-gFc, 0.15% ± 0.03% vs. 0.6 mg/kg dulaglutide, 0.04% ± 0.01%; P < .01) or QT interval changes (mean at 14-20 hours, mSc: 0.28 mg/kg GLP-1-gFc, 0.0-8.0 vs. 0.07 mg/kg dulaglutide, 8.0-27.7; n.s.), observed as safety variables in rats and monkeys, compared with those of dulaglutide. Glucose reductions in an oral glucose tolerance test were significant at day 3 postdose without severe gastrointestinal adverse events and pulse rate changes in healthy subjects. CONCLUSIONS: These results suggest that GLP-1-gFc could be used as a novel GLP-1 receptor agonist with better safety than dulaglutide to maximize therapeutic benefits in subjects with type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Glucagon-Like Peptide-1 Receptor , Animals , Blood Glucose , Glucagon-Like Peptides/adverse effects , Glucagon-Like Peptides/analogs & derivatives , Glucose , Glycated Hemoglobin/analysis , Hypoglycemic Agents/adverse effects , Immunoglobulin Fc Fragments/adverse effects , Mice , Rats , Recombinant Fusion Proteins
5.
Radiat Res ; 174(3): 265-73, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20726719

ABSTRACT

Aurora-A, a serine/threonine kinase that is overexpressed in certain human cancer cell lines, plays an important role in mitotic progression. Aurora-A has also been reported to be involved in the activation of nuclear factor kappa B (NF-kappaB). The purpose of the present study was to identify the role of Aurora-A in the radiation-induced activation pathway of NF-kappaB. Wild-type and Aurora-A knockdown (Aurora-A(KD)) HeLa cells were irradiated with 4 Gy of gamma rays and the EMSA, luciferase reporter gene assay and immunoblot analysis were performed. The siRNA-based gene knockdown and overexpression system was adopted to elucidate the role of Aurora-A in radiation-induced NF-kappaB pathway activation. The clonogenic survival study indicated that Aurora-A(KD) cells and the wild-type cells transfected with Aurora-A siRNA or RelA/p65 siRNA were more radiosensitive than the wild-type cells. In both the wild-type and Aurora-A(KD) cells, radiation caused IkappaB kinase-mediated phosphorylation, degradation of IkappaBalpha and phosphorylation of RelA/p65. The nuclear translocation of RelA/p65 was also similar in the wild-type and Aurora-A(KD) cells. However, RelA/p65-DNA binding was markedly suppressed in Aurora-A(KD) cells compared to that in wild-type cells. It was concluded that Aurora-A enhances the binding of NF-kappaB to DNA, thereby increasing the gene transcription by NF-kappaB and decreasing the radiosensitivity of the cells.


Subject(s)
DNA/metabolism , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , Radiation Tolerance , Aurora Kinases , Blotting, Western , Chromatin Immunoprecipitation , DNA Primers , Electrophoretic Mobility Shift Assay , Gene Knockdown Techniques , HeLa Cells , Humans , Microscopy, Fluorescence , Phosphorylation , Polymerase Chain Reaction , Protein Binding , Protein Serine-Threonine Kinases/genetics , RNA, Small Interfering
6.
Biochemistry ; 48(30): 7271-8, 2009 Aug 04.
Article in English | MEDLINE | ID: mdl-19591457

ABSTRACT

N-Tosyl-L-phenylalanine chloromethyl ketone (TPCK), a serine/cysteine protease inhibitor, has been reported to inhibit expression of inflammatory mediators by blocking nuclear factor-kappaB (NF-kappaB) activation. We examined the effect of TPCK on the NF-kappaB activation pathway in HeLa cells by measuring the activity of IkappaB kinase (IKK) and p65/RelA-DNA binding. TPCK inhibited tumor necrosis factor-alpha-induced IKK activation and directly blocked IKK activity in vitro. TPCK-induced inhibition of NF-kappaB and IKK activation was abrogated by addition of the thiol-reducing agent dithiothreitol, suggesting that the effect of TPCK occurred through modification of a thiol group in IKK. Consistent with this, an IKKbeta mutant in which Cys-179 was substituted with alanine was not more susceptible to TPCK. Our result also showed that TPCK inhibits the DNA binding of transiently expressed p65/RelA in HeLa cells. Inhibition of p65/RelA-DNA binding was recovered in the presence of dithiothreitol, and substitution of Cys-38 with Ser in p65/RelA rendered the protein resistant to inhibition by TPCK. Mass spectrometry analysis of IKKbeta and p65/RelA isolated from cells treated with TPCK by UPLC-ESI-Q-TOF tandem MS revealed the labeling of Cys-179 of IKKbeta and Cys-38 of p65/RelA with a tosylphenylalanylmethyl group. These results suggest that TPCK inhibits NF-kappaB activation by directly modifying thiol groups on two different targets: Cys-179 of IKKbeta and Cys-38 of p65/RelA.


Subject(s)
Cysteine/metabolism , I-kappa B Kinase , NF-kappa B/metabolism , Serine Proteinase Inhibitors/metabolism , Tosylphenylalanyl Chloromethyl Ketone/metabolism , Transcription Factor RelA , Amino Acid Sequence , Enzyme Activation , HeLa Cells , Humans , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Molecular Sequence Data , Molecular Structure , Mutagenesis, Site-Directed , NF-kappa B/genetics , Serine Proteinase Inhibitors/chemistry , Tosylphenylalanyl Chloromethyl Ketone/chemistry , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/metabolism
7.
Eur J Pharmacol ; 595(1-3): 108-13, 2008 Oct 24.
Article in English | MEDLINE | ID: mdl-18706406

ABSTRACT

N-tosyl-l-phenylalanine chloromethyl ketone (TPCK) is known to inhibit NF-kappaB activation and the expression of inflammation mediators in cultured cells. We measured the potential of TPCK to inhibit the pathogenesis of collagen-induced arthritis by blocking NF-kappaB activation. Arthritis was induced in DBA/1J mice by the injection of bovine type II collagen in adjuvant on days 0 and 14. Mice received either TPCK (3 or 10 mg/kg, i.p.) or vehicle three times a week for 3 weeks starting on day 21. TPCK moderately reduced clinical disease activity scores, whereas it markedly suppressed histological indications of joint destruction. In vitro production of tumor necrosis factor-alpha, interleukin-6, and monocyte chemotactic protein-1 from lipopolysaccharide-stimulated spleen cells was also reduced by in vivo treatment with TPCK. Proliferation of cells isolated from spleen or draining lymph nodes and production of interferon-gamma and interleukin-17 in response to stimulation with type II collagen was decreased by TPCK. Moreover, nuclear NF-kappaB activity induced by collagen immunization was significantly reduced in mice treated with TPCK. Finally, osteoclast differentiation of bone marrow cells induced by macrophage colony-stimulating factor and receptor activator of NF-kappaB ligand was completely inhibited by TPCK. These results indicate that TPCK attenuates collagen-induced arthritis and bone erosion by suppressing NF-kappaB activation and thus expression of inflammatory and osteoclastogenic genes.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Joints/drug effects , NF-kappa B/antagonists & inhibitors , Osteoclasts/drug effects , Tosylphenylalanyl Chloromethyl Ketone/pharmacology , Animals , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Cytokines/metabolism , Dose-Response Relationship, Drug , Joints/immunology , Joints/pathology , Lymphocyte Activation/drug effects , Male , Mice , Mice, Inbred DBA , NF-kappa B/metabolism , Osteoclasts/immunology , Osteoclasts/pathology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
8.
Exp Mol Med ; 38(5): 546-52, 2006 Oct 31.
Article in English | MEDLINE | ID: mdl-17079871

ABSTRACT

IkappaB kinase beta (IKKbeta) subunit of IKK complex is essential for the activation of NF-kappaB in response to various proinflammatory signals. Cys-179 in the activation loop of IKKbeta is known to be the target site for IKK inhibitors such as cyclopentenone prostaglandins, arsenite, and antirheumatic gold compounds. Here we show that a mutant IKKbeta in which Cys-179 is substituted with alanine had decreased activity when it was expressed in HEK-293 cells, and TNF stimulation did not restore the activity. Phosphorylation of activation loop serines (Ser-177 and Ser-181) which is required for IKKbeta activation was reduced in the IKKbeta (C179A) mutant. The activity of IKKbeta (C179A) was partially recovered when its phosphorylation was enforced by coexpression with mitogen-activated protein kinase kinase kinases (MAPKKK) such as NF-kappaB inducing kinase (NIK) and MAPK/extracellular signal-regulated kinase kinase kinase 1(MEKK1) or when the serine residues were replaced with phospho-mimetic glutamate. The IKKbeta (C179A) mutant was normal in dimer formation, while its activity abnormally responded to the change in the concentration of substrate ATP in reaction mixture. Our results suggest that Cys-179 of IKKbeta plays a critical role in enzyme activation by promoting phosphorylation of activation-loop serines and interaction with ATP.


Subject(s)
Cysteine/physiology , Enzyme Activation/physiology , I-kappa B Kinase/chemistry , Serine/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Substitution/physiology , Catalytic Domain , Cells, Cultured , HeLa Cells , Humans , MAP Kinase Kinase Kinases/metabolism , Mutant Proteins/chemistry , Phosphorylation , Protein Binding , Transfection
9.
Exp Mol Med ; 35(2): 61-6, 2003 Apr 30.
Article in English | MEDLINE | ID: mdl-12754408

ABSTRACT

Antirheumatic gold compounds have been shown to inhibit NF-kappaB activation by blocking IkappaB kinase (IKK) activity. To examine the possible inhibitory mechanism of gold compounds, we expressed wild type and mutant forms of IKKalpha and beta subunits in COS-7 cells and determined the effect of gold on the activity of these enzymes both in vivo and in vitro. Substitution of Cys-179 of IKKbeta with alanine (C179A) rendered the enzyme to become resistant to inhibition by a gold compound auranofin, however, similar protective effect was not observed with an equivalent level of IKKalpha (C178A) mutant expressed in the cells. Auranofin inhibited constitutively active IKKalpha and beta and variants; IKKalpha (S176E, S180E) or IKKbeta (S177E, S181E), suggesting that gold directly cause inhibition of activated enzyme. The different inhibitory effect of auranofin on IKKalpha (C178A) and IKKbeta (C179A) mutants indicates that gold could inhibit the two subunits of IKK in a different mode, and the inhibition of NF-kappaB and IKK activation induced by inflammatory signals in gold-treated cells appears through its interaction with Cys-179 of IKKbeta.


Subject(s)
Auranofin/pharmacology , Cysteine/metabolism , Gold Compounds/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Amino Acid Substitution , Animals , COS Cells , Cysteine/genetics , Enzyme Activation/drug effects , I-kappa B Kinase , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Subunits/chemistry , Sulfhydryl Compounds/pharmacology
10.
Exp Mol Med ; 34(5): 332-9, 2002 Nov 30.
Article in English | MEDLINE | ID: mdl-12526096

ABSTRACT

Reactive oxygen species (ROS) has been implicated as an inducer of NF-kappaB activity in numbers of cell types where exposure of cells to ROS such as H(2)O(2) leads to NF-kappaB activation. In contrast, exposure to oxidative stress in certain cell types induced reduction of tumor necrosis factor (TNF)- induced NF-kappaB activation. And various thiol-modifying agents including gold compounds and cyclopentenone prostaglandins inhibit NF-kappaB activation by blocking IkappaB kinase (IKK). To understand such conflicting effect of oxidative stress on NF- kappakB activation, HeLa cells were incubated with H(2)O(2) or diamide and TNF-induced expression of NF-kappaB reporter gene was measured. NF-kappaB activation was significantly blocked by these oxidizing agents, and the inhibition was accompanied with reduced nuclear NF-kappaB and inappropriate cytosolic IkappaB degradation. H(2)O(2) and diamide also inhibited IKK activation in HeLa and RAW 264.7 cells stimulated with TNF and lipopolysaccharide, respectively, and directly blocked IKK activity in vitro. In cells treated with H(2)O(2) alone, nuclear NF-kappaB was induced after 2 h without detectable degradation of cytosolic IkappaBalphaa or activation of IKK. Our results suggest that ROS has a dual effect on NF-kappaB activation in the same HeLa cells: it inhibits acute IKK-mediated NF-kappakB activation induced by inflammatory signals, while longer-term exposure to ROS induces NF-kappaB activity through an IKK-independent pathway.


Subject(s)
NF-kappa B/metabolism , Oxidative Stress , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cytosol/drug effects , Cytosol/metabolism , Diamide/pharmacology , HeLa Cells/drug effects , HeLa Cells/metabolism , Humans , Hydrogen Peroxide/pharmacology , I-kappa B Kinase , I-kappa B Proteins/drug effects , I-kappa B Proteins/metabolism , NF-kappa B/drug effects , NF-kappa B/genetics , Oxidants/pharmacology , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Time Factors , Transcription, Genetic , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...