Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Cancer ; 24(1): 951, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097719

ABSTRACT

BACKGROUND: Tobacco use is one of the main risk factors for Lung Cancer (LC) development. However, about 10-20% of those diagnosed with the disease are never-smokers. For Non-Small Cell Lung Cancer (NSCLC) there are clear differences in both the clinical presentation and the tumor genomic profiles between smokers and never-smokers. For example, the Lung Adenocarcinoma (LUAD) histological subtype in never-smokers is predominately found in young women of European, North American, and Asian descent. While the clinical presentation and tumor genomic profiles of smokers have been widely examined, never-smokers are usually underrepresented, especially those of a Latin American (LA) background. In this work, we characterize, for the first time, the difference in the genomic profiles between smokers and never-smokers LC patients from Chile. METHODS: We conduct a comparison by smoking status in the frequencies of genomic alterations (GAs) including somatic mutations and structural variants (fusions) in a total of 10 clinically relevant genes, including the eight most common actionable genes for LC (EGFR, KRAS, ALK, MET, BRAF, RET, ERBB2, and ROS1) and two established driver genes for malignancies other than LC (PIK3CA and MAP2K1). Study participants were grouped as either smokers (current and former, n = 473) or never-smokers (n = 200) according to self-report tobacco use at enrollment. RESULTS: Our findings indicate a higher overall GA frequency for never-smokers compared to smokers (58 vs. 45.7, p-value < 0.01) with the genes EGFR, KRAS, and PIK3CA displaying the highest prevalence while ERBB2, RET, and ROS1 the lowest. Never-smokers present higher frequencies in seven out of the 10 genes; however, smokers harbor a more complex genomic profile. The clearest differences between groups are seen for EGFR (15.6 vs. 21.5, p-value: < 0.01), PIK3CA (6.8 vs 9.5) and ALK (3.2 vs 7.5) in favor of never-smokers, and KRAS (16.3 vs. 11.5) and MAP2K1 (6.6 vs. 3.5) in favor of smokers. Alterations in these genes are comprised almost exclusively by somatic mutations in EGFR and mainly by fusions in ALK, and only by mutations in PIK3CA, KRAS and MAP2K1. CONCLUSIONS: We found clear differences in the genomic landscape by smoking status in LUAD patients from Chile, with potential implications for clinical management in these limited-resource settings.


Subject(s)
Lung Neoplasms , Non-Smokers , Smokers , Humans , Lung Neoplasms/genetics , Lung Neoplasms/epidemiology , Lung Neoplasms/etiology , Female , Male , Smokers/statistics & numerical data , Middle Aged , Non-Smokers/statistics & numerical data , Aged , Smoking/genetics , Smoking/adverse effects , Smoking/epidemiology , Mutation , Genomics/methods , Adult , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/epidemiology , Carcinoma, Non-Small-Cell Lung/pathology
2.
Front Plant Sci ; 11: 1115, 2020.
Article in English | MEDLINE | ID: mdl-32765576

ABSTRACT

Temperate deciduous fruit tree species like sweet cherry (Prunus avium) require long periods of low temperatures to trigger dormancy release and flowering. In addition to sequence-based genetic diversity, epigenetic variation may contribute to different chilling requirements among varieties. For the low chill variety 'Royal Dawn' and high chill variety 'Kordia', we studied the methylome of floral buds during chilling accumulation using MethylC-seq to identify differentially methylated regions (DMRs) during chilling hours (CH) accumulation, followed by transcriptome analysis to correlate changes in gene expression with DNA methylation. We found that during chilling accumulation, DNA methylation increased from 173 CH in 'Royal Dawn' and 443 CH in 'Kordia' and was mostly associated with the CHH context. In addition, transcriptional changes were observed from 443 CH in 'Kordia' with 1,210 differentially expressed genes, increasing to 4,292 genes at 1,295 CH. While 'Royal Dawn' showed approximately 5,000 genes differentially expressed at 348 CH and 516 CH, showing a reprogramming that was specific for each genotype. From conserved upregulated genes that overlapped with hypomethylated regions and downregulated genes that overlapped with hypermethylated regions in both varieties, we identified genes related to cold-sensing, cold-signaling, oxidation-reduction process, metabolism of phenylpropanoids and lipids, and a MADS-box SVP-like gene. As a complementary analysis, we used conserved and non-conserved DEGs that presented a negative correlation between DNA methylations and mRNA levels across all chilling conditions, obtaining Gene Ontology (GO) categories related to abiotic stress, metabolism, and oxidative stress. Altogether, this data indicates that changes in DNA methylation precedes transcript changes and may occur as an early response to low temperatures to increase the cold tolerance in the endodormancy period, contributing with the first methylome information about the effect of environmental cues over two different genotypes of sweet cherry.

3.
F1000Res ; 62017.
Article in English | MEDLINE | ID: mdl-28928937

ABSTRACT

This report summarizes the scientific content and activities of the second edition of the Latin American Symposium (LA-SCS), organized by the Student Council (SC) of the International Society for Computational Biology (ISCB), held in conjunction with the Fourth Latin American conference from the International Society for Computational Biology (ISCB-LA 2016) in Buenos Aires, Argentina, on November 19, 2016.

4.
Mol Pharmacol ; 90(3): 300-8, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27335334

ABSTRACT

The transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal receptor that mediates the flux of cations across the membrane in response to several stimuli, including heat, voltage, and ligands. The best known agonist of TRPV1 channels is capsaicin, the pungent component of "hot" chili peppers. In addition, peptides found in the venom of poisonous animals, along with the lipids phosphatidylinositol 4,5-biphosphate, lysophosphatidic acid, and cholesterol, bind to TRPV1 with high affinity to modulate channel gating. Here, we discuss the functional evidence regarding ligand-dependent activation of TRPV1 channels in light of structural data recently obtained by cryoelectron microscopy. This review focuses on the mechanistic insights into ligand binding and allosteric gating of TRPV1 channels and the relevance of accurate polymodal receptor biophysical characterization for drug design in novel pain therapies.


Subject(s)
TRPV Cation Channels/chemistry , TRPV Cation Channels/pharmacology , Animals , Binding Sites , Humans , Ion Channel Gating/drug effects , Ligands , Lipids/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL