Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; 40(10): 1306-1315, 2019 Apr.
Article in English | MEDLINE | ID: mdl-29307268

ABSTRACT

Denitrification with p-cresol as the electron source was studied in the presence of three quinones at different molar concentrations (0-2 mM): menadione (MEN), alizarine (ALZ) and anthraquinone-2,6-disulfonate (AQDS). Results showed that denitrifying yields were not altered (0.9), but the substrates' consumption efficiency was mainly affected when adding MEN. In the presence of ALZ and MEN, specific consumption rates decreased 40% for p-cresol and 90% for nitrate. The sludge previously exposed to quinones was submitted to recovering denitrifying studies using acetate and p-cresol. After exposing to AQDS and ALZ, the metabolic activity of denitrifying sludge was completely recovered. The previous exposition to any MEN concentration resulted in a very low metabolic recuperation. The results show that MEN and ALZ have a marked inhibitory effect on substrates' consumption and the AQDS does not affect at all. The evidence suggests that MEN modifies the transport system of substrates and ALZ forms a complex with molybdenum. A model based on oxido-reduction potentials of the enzymes involved points out that the influence of quinones tested appears to be more associated with quinone moiety structural properties and hydrophobicity.


Subject(s)
Denitrification , Sewage , Nitrates , Oxidation-Reduction , Quinones
2.
Environ Technol ; 40(21): 2747-2755, 2019 Sep.
Article in English | MEDLINE | ID: mdl-29517947

ABSTRACT

The effect of three electric potentials (EP) (+104, -187 and -279 mV) applied to the denitrifying process was explored. It was observed that the denitrifying sludge was able to support the oxidation of p-cresol with the application of the EP in the absence of nitrate, but it was unable to drive the denitrification without an organic electron donor. On denitrification, the applied EP uncoupled the oxidative from the reductive process, favoring the p-cresol oxidation over the production of N2. Additionally, biochemical level effects were observed. At +104 and -279 mV potentials, the nitrate and nitrite consumption was affected as well as the p-hydroxybenzoate transformation. However, at -187 mV, effects seemed to occur only on the transport of substrates. This paper presents evidence that denitrification has very characteristic and different physiological behaviors for each EP assayed.


Subject(s)
Denitrification , Nitrates , Bioreactors , Nitrites , Oxidation-Reduction , Sewage
3.
J Food Prot ; 81(11): 1748-1754, 2018 11.
Article in English | MEDLINE | ID: mdl-30272999

ABSTRACT

Cheesemaking is one of the most important industries in Mexico. Among all the Mexican cheeses, fresh cheeses are the most popular and most consumed cheese in Mexico and Latin America. However, in Mexico fresh cheese is frequently made with unpasteurized milk and sold in public markets. This may increase the risk for contamination of dairy products with pathogenic bacteria. The presence of multidrug-resistant pathogenic bacteria in food is an important public health concern. Diarrheagenic Escherichia coli pathotypes (DEPs) are foodborne bacteria. This study investigated the presence of indicator bacteria and multidrug-resistant DEPs in fresh cheeses. A total of 120 fresh cheese samples were collected from public markets in the city of Pachuca, Mexico. The samples were analyzed for presence of fecal coliforms (FC), E. coli, and antibiotic resistant DEPs. FC and E. coli were analyzed using the most-probable-number technique. DEPs were identified using two multiplex PCR methods. Susceptibility to 16 antibiotics was tested for the isolated DEPs strains by the standard assay. The frequency of FC, E. coli, and DEPs in the cheese samples was 50, 40, and 19%, respectively. The identified DEPs included Shiga toxin-producing E. coli (STEC; 8%), enteropathogenic E. coli (EPEC; 6%), and enterotoxigenic E. coli (ETEC; 5%). All isolated strains exhibited resistance to at least five antibiotics. One, one, two, and three STEC strains were resistant to 14, 12, 11, and 10 antibiotics, respectively. One strain of EPEC was resistant to 11 antibiotics, three EPEC strains to 9, and one strain to 7. One, one, and two strains of ETEC were resistant to 10, 8, and 7 antibiotics, respectively. The results of the present study indicate that fresh cheeses made with unpasteurized milk could be a risk for consumers, both for native people and visitors to Mexico.


Subject(s)
Cheese , Drug Resistance, Multiple, Bacterial , Enteropathogenic Escherichia coli , Enterotoxigenic Escherichia coli , Food Contamination/analysis , Shiga-Toxigenic Escherichia coli , Cheese/microbiology , Enteropathogenic Escherichia coli/drug effects , Enteropathogenic Escherichia coli/isolation & purification , Enterotoxigenic Escherichia coli/drug effects , Enterotoxigenic Escherichia coli/isolation & purification , Mexico , Shiga-Toxigenic Escherichia coli/drug effects , Shiga-Toxigenic Escherichia coli/isolation & purification
4.
J Food Prot ; 81(5): 743-753, 2018 05.
Article in English | MEDLINE | ID: mdl-29620488

ABSTRACT

The behavior of foodborne bacteria on whole and cut mangoes and the antibacterial effect of Hibiscus sabdariffa calyx extracts and chemical sanitizers against foodborne bacteria on contaminated mangoes were investigated. Mangoes var. Ataulfo and Kent were used in the study. Mangoes were inoculated with Listeria monocytogenes, Shigella flexneri, Salmonella Typhimurium, Salmonella Typhi, Salmonella Montevideo, Escherichia coli strains (O157:H7, non-O157:H7 Shiga toxin-producing, enteropathogenic, enterotoxigenic, enteroinvasive, and enteroaggregative). The antibacterial effect of five roselle calyx extracts (water, ethanol, methanol, acetone, and ethyl acetate), sodium hypochlorite, colloidal silver, and acetic acid against foodborne bacteria were evaluated on contaminated mangoes. The dry extracts obtained with ethanol, methanol, acetone, and ethyl acetate were analyzed by nuclear magnetic resonance spectroscopy to determine solvent residues. Separately, contaminated whole mangoes were immersed in five hibiscus extracts and in sanitizers for 5 min. All foodborne bacteria attached to mangoes. After 20 days at 25 ± 2°C, all foodborne bacterial strains on whole Ataulfo mangoes had decreased by approximately 2.5 log, and on Kent mangoes by approximately 2 log; at 3 ± 2°C, they had decreased to approximately 1.9 and 1.5 log, respectively, on Ataulfo and Kent. All foodborne bacterial strains grew on cut mangoes at 25 ± 2°C; however, at 3 ± 2°C, bacterial growth was inhibited. Residual solvents were not detected in any of the dry extracts by nuclear magnetic resonance. Acetonic, ethanolic, and methanolic roselle calyx extracts caused a greater reduction in concentration (2 to 2.6 log CFU/g) of all foodborne bacteria on contaminated whole mangoes than the sodium hypochlorite, colloidal silver, and acetic acid. Dry roselle calyx extracts may be a potentially useful addition to disinfection procedures of mangoes.


Subject(s)
Hibiscus , Mangifera , Microbiota/drug effects , Plant Extracts/pharmacology , Anti-Bacterial Agents/pharmacology , Colony Count, Microbial , Escherichia coli O157/drug effects , Food Contamination/prevention & control , Food Microbiology , Hibiscus/chemistry , Listeria monocytogenes/drug effects , Mangifera/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL