Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Physiol Biochem ; : 1-13, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828847

ABSTRACT

Keratinocyte and fibroblast dysfunctions contribute to delayed healing of diabetic wounds. Small extracellular vesicles (sEV) are key mediators of intercellular communication and are involved in the pathogenesis of several diseases. Recent findings suggest that sEV derived from high-glucose-treated keratinocyte (HaCaT-HG-sEV) can transport LINC01435 to inhibit tube formation and migration of HUVECs, thereby delaying wound healing. This study aimed to elucidate sEV-related communication mechanisms between keratinocytes and fibroblasts during diabetic wound healing. HaCaT-HG-sEV treatment and LINC01435 overexpression significantly decreased fibroblast collagen level and migration ability but significantly increased fibroblast autophagy. However, treatment with an autophagy inhibitor suppressed LINC01435 overexpression-induced decrease in collagen levels in fibroblasts. In diabetic mice, HaCaT-HG-sEV treatment decreased collagen levels and increased the expression of the autophagy-related proteins Beclin-1 and LC3 at the wound site, thereby delaying wound healing. Conclusively, LINC01435 in keratinocyte-derived sEV activates fibroblast autophagy and reduces fibroblast collagen synthesis, leading to impaired diabetic wound healing.


Diabetic foot ulcers are a serious complication of diabetes and can lead to amputation and death. Therefore, it is crucial to comprehensively elucidate the mechanisms of delayed diabetic wound healing, with emphasis on the role of keratinocyte-derived small extracellular vesicles. In vivo and in vitro experiments showed that keratinocyte-derived small extracellular vesicles suppressed diabetic wound healing, which is partly attributed to the effects of their content (LINC01435) in fibroblasts. This study suggests that LINC01435 could be targeted to regulate diabetic wound healing.

2.
EBioMedicine ; 44: 665-674, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30922964

ABSTRACT

BACKGROUND: Increasing evidence indicates that the gut microbiota contributes to the occurrence and development of metabolic diseases. However, little is known about the effects of commonly used antidiabetic agents on the gut microbiota. In this study, we investigated the roles of dipeptidyl peptidase-4 inhibitors (DPP-4i) and α-glucosidase inhibitor in modulating the gut microbiota. METHODS: 16S-rDNA sequencing was performed to analyse the effects of DPP-4i and acarbose on the gut microbiota in mice fed a high-fat diet (HFD). Fecal microbiota transplantation (FMT) from type 2 diabetes patients to germ-free mice was performed to investigate the contribution of the altered microbiome to antidiabetic effects of the drugs. Fecal metabolomics was also analysed by untargeted and targeted GC-MS systems. FINDINGS: Although DPP-4i and α-glucosidase inhibitor both altered the gut microbial composition, only the microbiome modulation of DPP-4i contributed to its hypoglycemic effect. Specifically, the changes of 68.6% genera induced by HFD were rescued by DPP-4i. FMT showed that the DPP-4i-altered microbiome improved glucose tolerance in colonized mice, while acarbose did not. Moreover, DPP-4i increased the abundance of Bacteroidetes, and also promoted a functional shift in the gut microbiome, especially increasing the production of succinate. INTERPRETATION: Our findings demonstrate an important effect of DPP-4i on the gut microbiota, revealing a new hypoglycemic mechanism and an additional benefit of it. Furthermore, modulating the microbial composition, and the functional shift arising from changes in the microbiome, might be a potential strategy for improving glucose homeostasis. FUND: This work was supported by grants from the National Natural Science Foundation of China (No. 81700757, No. 81471039, No. 81700714 and No. 81770434), the National Key R&D Program of China (No. 2017YFC1309602, No. 2016YFC1101100, No. 2017YFD0500503 and No. 2017YFD0501001), and the Natural Science Foundation of Chongqing (No. cstc2014jcyjjq10006, No. cstc2016jcyjA0093 and No. cstc2016jcyjA0518).


Subject(s)
Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Gastrointestinal Microbiome/drug effects , Glucose/metabolism , Homeostasis/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Blood Glucose , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Disease Models, Animal , Glucose Tolerance Test , Humans , Insulin/metabolism , Male , Metagenome , Metagenomics/methods , Mice
3.
Diabetes ; 67(3): 518-531, 2018 03.
Article in English | MEDLINE | ID: mdl-29254987

ABSTRACT

Patients with diabetes often experience multiple disease complications. Hypoglycemic agents can have both positive and negative effects on diabetic complications, which should be carefully assessed when personalized treatment strategies are developed. In this study we report that dipeptidyl peptidase 4 inhibitors (DPP-4is), a group of widely used antihyperglycemic agents, can improve diabetic wound healing, independent of their beneficial effects on glycemic control. In particular, DPP-4is promoted the migration and epithelial-mesenchymal transition of keratinocytes, directly and indirectly, by inducing stromal cell-derived factor 1α production of fibroblasts in vitro and in diabetic mice. In addition, DPP-4is attenuated collagen synthesis and deposition, which may diminish scar formation. Furthermore, the results of a randomized clinical trial (NCT02742233) involving 67 patients with type 2 diabetes supported the role of DPP-4i treatment in diabetic wound healing. Our findings support the application of DPP-4i as a preferred option for treating ulcers in patients with diabetes.


Subject(s)
Cicatrix/prevention & control , Diabetes Mellitus, Type 2/drug therapy , Diabetic Foot/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Epithelial-Mesenchymal Transition/drug effects , Keratinocytes/drug effects , Wound Healing/drug effects , Aged , Aged, 80 and over , Animals , Cell Line , Cell Movement/drug effects , Cells, Cultured , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Diabetic Foot/metabolism , Diabetic Foot/pathology , Diabetic Foot/physiopathology , Dipeptidyl-Peptidase IV Inhibitors/adverse effects , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Female , Follow-Up Studies , Humans , Hyperglycemia/prevention & control , Keratinocytes/cytology , Keratinocytes/metabolism , Keratinocytes/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL