Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters











Publication year range
1.
Food Chem ; 461: 140901, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39178541

ABSTRACT

The excessive consumption of sodium-containing seasonings has led to an increased burden on individuals' cardiovascular system and adversely affected their health. Recently, an innovative salt-reducing strategy utilizing salty peptides has emerged with promising prospects. In this study, Porphyra haitanensis salty peptides (PHSPs) was obtained through hydrolysis and ultrafiltration. The salty taste of 30 mg/mL PHSPs was comparable to that of about 40 mM NaCl. The higher proportion of umami and sweet amino acids in PHSPs was found, which contributed to the salty and umami taste. Factors affecting the flavor of PHSPs were also investigated. CaCl2 exhibited the excellent synergistic enhancement with PHSPs on the salty taste, while the bitter taste of CaCl2 was masked in the presence of PHSPs, which was attributed to the chelation between calcium and peptides. Above all, it is expected that PHSPs can be further developed and support the emerging salt-reducing strategy in food engineering.

2.
J Adv Res ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39168246

ABSTRACT

INTRODUCTION: Wound infections and formation of biofilms caused by multidrug-resistant bacteria have constituted a series of wound deteriorated and life-threatening problems. The in situ resisting bacterial adhesion, killing multidrug-resistance bacteria, and releasing dead bacteria is strongly required to supply a gap of existing sterilization strategies. OBJECTIVES: This study aims to present a facile approach to construct a bacteria-responsive hydrogel with switchable antimicrobial-antifouling properties through a "resisting-killing-releasing" method. METHODS: The smart bacteria-responsive hydrogel was constructed by two-step immersion strategy: a simple immersion-coating process to construct Polydopamine (pDA) coatings on the surface of a gelatin-chitosan composite hydrogel and followed by grafting of bactericidal quaternary ammonium chitosan (QCS) as well as pH-responsive PMAA to this pDA coating. The in vitro antimicrobial activity, biocompatibility and the in vivo wound healing effects in a mouse MRSA-infected full-thickness defect model of the hydrogel were further evaluated. RESULTS: Assisted by polydopamine coating, the pH-responsive PMAA and bactericidal QCS are successfully grafted onto a gelatin-chitosan composite hydrogel surface and hydrogels maintain the adequate mechanical properties. At physiological conditions, the PMAA hydration layer endows the hydrogel with resistance to initial bacterial attachment. Once bacteria colonize and acidize local environment, the swelling PMAA chains tend to collapse then expose the bactericidal QCS, realizing the on-demand kill bacteria. Moreover, the dead bacteria can be released and the hydrogel will resume the resistance due to hydrophilicity of PMAA at increased pH, endowing the surface renewable ability. In vitro and in vivo studies demonstrate the favorable biocompatibility and wound healing capacity of hydrogels that can inhibit infection and further facilitate granulation tissue, angiogenesis, and collagen synthesis. CONCLUSION: This strategy provides a novel methodology for the development and design of smart wound dressing to combat multidrug-resistant bacteria infections.

3.
Foods ; 13(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39123603

ABSTRACT

The influence of epigallocatechin gallate (EGCG) on the physicochemical-rheological properties of silver carp surimi gel was investigated. The gel strength, texture, water-holding capacity (WHC), dynamic distribution of water, and rheological properties of surimi gels added with different levels (0, 0.02, 0.04, 0.06, 0.08, and 0.1%) of EGCG were measured. The results showed that with the increase of EGCG content, the gel strength, hardness, WHC, and immobilized water contents of surimi gels showed a trend of first increasing and then decreasing, and EGCG 0.02% and EGCG 0.04% showed better gel performance as compared with the control. EGCG 0.02% had the highest gel strength (406.62 g·cm), hardness (356.67 g), WHC (64.37%), and immobilized water contents (98.958%). The gel performance decreased significantly when the amounts of EGCG were higher than 0.06%. The viscosity, G', and G″ of the rheological properties also showed the same trends. The chemical interaction of surimi gels, secondary structure of myofibrillar protein (MP), and molecular docking results of EGCG and silver carp myosin showed that EGCG mainly affected the structure and aggregation behavior of silver carp myosin through non-covalent interactions such as those of hydrogen bonds, hydrophobic interactions, and electrostatic interactions. The microstructures of EGCG 0.02% and EGCG 0.04% were compact and homogeneous, and had better gel formation ability. The lower concentrations of EGCG formed a large number of chemical interactions such as those of disulfide bonds and hydrophobic interactions inside the surimi gels by proper cross-linking with MP, and also increased the ordered ß-sheet structure of MP, which facilitated the formation of the compact three-dimensional network gel.

4.
Environ Pollut ; 360: 124620, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39067741

ABSTRACT

Rhizoremediation and bioaugmentation have proven effective in promoting benzo[a]pyrene (BaP) degradation in contaminated soils. However, the mechanism underlying bioaugmented rhizospheric BaP degradation with native microbes is poorly understood. In this study, an indigenous BaP degrader (Stenotrophomonas BaP-1) isolated from petroleum-contaminated soil was introduced into ryegrass rhizosphere to investigate the relationship between indigenous degraders and rhizospheric BaP degradation. Stable isotope probing and 16S rRNA gene amplicon sequencing subsequently revealed 15 BaP degraders, 8 of which were directly associated with BaP degradation including Bradyrhizobium and Streptomyces. Bioaugmentation with strain BaP-1 significantly enhanced rhizospheric BaP degradation and shaped the microbial community structure. A correlation of BaP degraders, BaP degradation efficiency, and functional genes identified active degraders and genes encoding polycyclic aromatic hydrocarbon-ring hydroxylating dioxygenase (PAH-RHD) genes as the primary drivers of rhizospheric BaP degradation. Furthermore, strain BaP-1 was shown to not only engage in BaP metabolism but also to increase the abundance of other BaP degraders and PAH-RHD genes, resulting in enhanced rhizospheric BaP degradation. Metagenomic and correlation analyses indicated a significant positive relationship between glyoxylate and dicarboxylate metabolism and BaP degradation, suggesting a role for these pathways in rhizospheric BaP biodegradation. By identifying BaP degraders and characterizing their metabolic characteristics within intricate microbial communities, our study offers valuable insights into the mechanisms of bioaugmented rhizoremediation with indigenous bacteria for high-molecular-weight PAHs in petroleum-contaminated soils.

5.
Int J Biol Macromol ; 277(Pt 2): 134009, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39043288

ABSTRACT

Antifreeze peptide (AFP) including in frozen protein ink is an inevitable trend because AFP can make protein ink suitable for 3D printing after freezing. AFP-based surimi ink (ASI) was firstly investigated, and the AFP significantly enhanced 3D printability of frozen surimi ink. The rheological and textural results of ASI show that the τ0, K, and n values are 321.14 Pa, 2.2259 × 105 Pa·sn, and 0.19, respectively, and the rupture strength of the 3D structure is up to 217.67 g. Circular dichroism, intermolecular force, and differential scanning calorimeter show ASI has more undenatured protein after freezing when compared that surimi ink (SI), which was denatured, and the α-helix changed to a ß-sheet due to the destruction of hydrogen bonds and the exposure of hydrophobic groups. The water distribution, water holding capacity, and microstructure indicate that ASI effectively binds free water after freezing, while SI has weak water binding capacity and a large amount of free water is formed. ASI is suitable for 3D printing, and can print up to 40.0 mm hollow isolation column and 50.0 mm high Wuba which is not possible with SI. The application of AFP provides guidance for 3D printing frozen protein ink in food industry.


Subject(s)
Antifreeze Proteins , Freezing , Ink , Printing, Three-Dimensional , Antifreeze Proteins/chemistry , Rheology , Water/chemistry
6.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38913500

ABSTRACT

Soil microbial flora constitutes a highly diverse and complex microbiome on Earth, often challenging to cultivation, with unclear metabolic mechanisms in situ. Here, we present a pioneering concept for the in situ construction of functional microbial consortia (FMCs) and introduce an innovative method for creating FMCs by utilizing phenanthrene as a model compound to elucidate their in situ biodegradation mechanisms. Our methodology involves single-cell identification, sorting, and culture of functional microorganisms, resulting in the formation of a precise in situ FMC. Through Raman-activated cell sorting-stable-isotope probing, we identified and isolated phenanthrene-degrading bacterial cells from Achromobacter sp. and Pseudomonas sp., achieving precise and controllable in situ consortia based on genome-guided cultivation. Our in situ FMC outperformed conventionally designed functional flora when tested in real soil, indicating its superior phenanthrene degradation capacity. We revealed that microorganisms with high degradation efficiency isolated through conventional methods may exhibit pollutant tolerance but lack actual degradation ability in natural environments. This finding highlights the potential to construct FMCs based on thorough elucidation of in situ functional degraders, thereby achieving sustained and efficient pollutant degradation. Single-cell sequencing linked degraders with their genes and metabolic pathways, providing insights regarding the construction of in situ FMCs. The consortium in situ comprising microorganisms with diverse phenanthrene metabolic pathways might offer distinct advantages for enhancing phenanthrene degradation efficiency, such as the division of labour and cooperation or communication among microbial species. Our approach underscores the importance of in situ, single-cell precision identification, isolation, and cultivation for comprehensive bacterial functional analysis and resource exploration, which can extend to investigate MFCs in archaea and fungi, clarifying FMC construction methods for element recycling and pollutant transformation in complex real-world ecosystems.


Subject(s)
Biodegradation, Environmental , Isotope Labeling , Microbial Consortia , Phenanthrenes , Pseudomonas , Single-Cell Analysis , Soil Microbiology , Phenanthrenes/metabolism , Isotope Labeling/methods , Single-Cell Analysis/methods , Pseudomonas/metabolism , Pseudomonas/genetics , Achromobacter/metabolism , Achromobacter/genetics , Polycyclic Aromatic Hydrocarbons/metabolism , Soil Pollutants/metabolism , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification
7.
Appl Environ Microbiol ; 90(6): e0066224, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38752833

ABSTRACT

Fungal-bacterial consortia enhance organic pollutant removal, but the underlying mechanisms are unclear. We used stable isotope probing (SIP) to explore the mechanism of bioaugmentation involved in polycyclic aromatic hydrocarbon (PAH) biodegradation in petroleum-contaminated soil by introducing the indigenous fungal strain Aspergillus sp. LJD-29 and the bacterial strain Pseudomonas XH-1. While each strain alone increased phenanthrene (PHE) degradation, the simultaneous addition of both strains showed no significant enhancement compared to treatment with XH-1 alone. Nonetheless, the assimilation effect of microorganisms on PHE was significantly enhanced. SIP revealed a role of XH-1 in PHE degradation, while the absence of LJD-29 in 13C-DNA indicated a supporting role. The correlations between fungal abundance, degradation efficiency, and soil extracellular enzyme activity indicated that LJD-29, while not directly involved in PHE assimilation, played a crucial role in the breakdown of PHE through extracellular enzymes, facilitating the assimilation of metabolites by bacteria. This observation was substantiated by the results of metabolite analysis. Furthermore, the combination of fungus and bacterium significantly influenced the diversity of PHE degraders. Taken together, this study highlighted the synergistic effects of fungi and bacteria in PAH degradation, revealed a new fungal-bacterial bioaugmentation mechanism and diversity of PAH-degrading microorganisms, and provided insights for in situ bioremediation of PAH-contaminated soil.IMPORTANCEThis study was performed to explore the mechanism of bioaugmentation by a fungal-bacterial consortium for phenanthrene (PHE) degradation in petroleum-contaminated soil. Using the indigenous fungal strain Aspergillus sp. LJD-29 and bacterial strain Pseudomonas XH-1, we performed stable isotope probing (SIP) to trace active PHE-degrading microorganisms. While inoculation of either organism alone significantly enhanced PHE degradation, the simultaneous addition of both strains revealed complex interactions. The efficiency plateaued, highlighting the nuanced microbial interactions. SIP identified XH-1 as the primary contributor to in situ PHE degradation, in contrast to the limited role of LJD-29. Correlations between fungal abundance, degradation efficiency, and extracellular enzyme activity underscored the pivotal role of LJD-29 in enzymatically facilitating PHE breakdown and enriching bacterial assimilation. Metabolite analysis validated this synergy, unveiling distinct biodegradation mechanisms. Furthermore, this fungal-bacterial alliance significantly impacted PHE-degrading microorganism diversity. These findings advance our understanding of fungal-bacterial bioaugmentation and microorganism diversity in polycyclic aromatic hydrocarbon (PAH) degradation as well as providing insights for theoretical guidance in the in situ bioremediation of PAH-contaminated soil.


Subject(s)
Aspergillus , Biodegradation, Environmental , Microbial Consortia , Phenanthrenes , Soil Microbiology , Soil Pollutants , Phenanthrenes/metabolism , Soil Pollutants/metabolism , Aspergillus/metabolism , Pseudomonas/metabolism , Pseudomonas/genetics , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Fungi/metabolism , Fungi/genetics , Fungi/classification
8.
Plant Dis ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744710

ABSTRACT

Lippia (Phyla canescens) is a fast-growing, mat-forming, and prostrate perennial plant well adapted to infertile, high-saline, and drought environments (Leigh, et al. 2004). It arrived in China from Japan as a flowering ground cover in 2001 (Cai, et al. 2004). In June 2022, southern blight appeared in our nursery of the Floriculture Research Institute of Guangdong Academy of Agricultural Sciences. High temperature and damp environment are major factors for this disease. The symptoms of top-layer plants were not easily detected, but they were slightly yellowed. A yellowish-brown water-soak lesion appeared on the stems and lowest leaves exposed to soil. White mycelium appeared in the middle stage. Finally, the surface plants showed water-soak decay, and a mass of beige to black-brown rapeseed-shaped sclerotia appeared on the residue and surrounding soil; these plants died. Sclerotia and mycelia were collected from disease tissue, and after surface sterilization, sclerotia was cultured on potato dextrose agar (PDA) at 28±2°C in an incubator without light. Eight fungal isolates with similar colony morphologies were consistently isolated by purifying from different sampling areas. The isolates exhibited obvious septa and a clamp connection structure within the white mycelium. The average growth rate was 26.86±0.06 mm/day. Numerous white granular sclerotia were produced on the mycelium 6 days later. The sclerotia with a diameter of 1.24±0.07mm (n=189) gradually changed from diage to yellow to brown. A typical strain B1 was selected for further identification, targeting its 18S rRNA and LSU rRNA sequences (Yang, et al. 2011; Xue, et al. 2019). Its 18S rRNA sequence (GenBank Accession No. OR517233, 1626 bp) is 99.63% and 99.57% identical to Athelia rolfsii (AY665774, 1179bp; KC670714, 1775bp; JF819726, 1781bp). Its LSU rRNA sequence (OR539570, 757 bp) is 99.87% identical to Agroathelia rolfsii (OR526537, 904 bp). For Athelia rolfsii, a synonym of Agroathelia rolfsii, by combining the morphological characteristics and molecular identification, the isolate pathogen B1 was confirmed to be Agroathelia rolfsii (the teleomorph of Sclerotium rolfsii). To fullfill Koch's postulates, we inoculated the mycelial plugs to healthy lippia stems and leaves which has grown for one year, with PDA plugs free of mycelium as the control. All the plants were kept in a greenhouse at 28±2°C with a 14-h photoperiod and 80% relative humidity. Each treatment was repeated thrice and vaccinated with 6 points. At 7 d following inoculation, all plants inoculated with B1 showed typical symptoms, but the control group was asymptomatic, and sclerotia appeared 17d after inoculation. Using the same protocol mentioned above, pathogenic fungal was reisolated only from treated groups, but not from the control group. Chose three of the pathogens for 18S rRNA and LSU rRNA sequencing, the results showed 100% identity to B1, the same as its microstructure. There are few reports about the disease on P. canescens. Sosa (2007) investigated the pathogens on P. canescens in Argentina, 16 fungi were found but no A. rolfsii. Sclerotium rolfsii were identified on P. nodiflora or P. lanceolata (Michaux) Greene in America (Farr, et al. 1989). To our knowledge, this is the first report in China. Because this pathogen has wide-ranging hosts and causes serious damage, the results from this study will offer guidance for the prevention and treatment of this disease.

9.
Sci Total Environ ; 934: 173340, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38763201

ABSTRACT

Arsenic release and reduction in anoxic environments can be mitigated or facilitated by biochar amendment. However, the key fractions in biochars and how they control arsenic transformation remain poorly understood. In this study, a biochar produced from pomelo peel was rich in colloids and was used to evaluate the roles of the colloidal and residual fractions of biochar in arsenic transformation in anoxic paddy soil. Bulk biochar showed a markedly higher maximum adsorption capacity for As(III) at 1732 mg/kg than for As(V) at 75.7 mg/kg, mainly because of the colloidal fraction on the surface. When compared with the control and treatments with the colloidal/residual fraction, the addition of bulk biochar facilitated As(V) reduction and release in the soil during days 0-12, but decreased the dissolved As(III) concentration during days 12-20. The colloidal fraction revealed significantly higher electron donating capacity (8.26 µmole-/g) than that of bulk biochar (0.88 µmole-/g) and residual fraction (0.65 µmole-/g), acting as electron shuttle to promote As(V) reduction. Because the colloidal fraction was rich in aliphatic carbon, fulvic acid-like compounds, potassium, and calcium, it favored As(III) adsorption when more As(III) was released, probably via organic-cation-As(III) complexation. These findings provide deeper insight into the role of the colloidal fraction of biochar in controlling anaerobic arsenic transformation, which will be helpful for the practical application of biochar in arsenic-contaminated environments.


Subject(s)
Arsenic , Charcoal , Soil Pollutants , Soil , Charcoal/chemistry , Arsenic/analysis , Adsorption , Soil/chemistry , Colloids/chemistry , Citrus/chemistry , Environmental Restoration and Remediation/methods
10.
Bioresour Technol ; 402: 130785, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703956

ABSTRACT

Agricultural biomass used as solid carbon substrates in ecological floating beds (EFBs) has been proven to be applicable in nitrogen removal for carbon-limited wastewater treatment. However, the subtle interactions among plants, rhizosphere microorganisms, and supplementary carbon sources have not been thoroughly studied. This study combined rice straw mats with different aquatic macrophytes in EFBs to investigate denitrification efficiency in carbon-limited eutrophic waters. Results showed that rice straw significantly enhanced the nitrogen removal efficiency of EFBs, while enriching nitrogen-fixing and denitrifying bacteria (such as Rhizobium, Rubrivivax, and Rhodobacter, etc.). Additionally, during the denitrification process in EFBs, rice straw can release humic acid-like fraction as electron donors to support the metabolic activities of microorganisms, while aquatic macrophytes provide a more diverse range of dissolved organic matters, facilitating a sustainable denitrification process. These findings help to understand the synergistic effect of denitrification processes within wetland ecosystems using agricultural biomass.


Subject(s)
Carbon , Denitrification , Nitrogen , Oryza , Wastewater , Wastewater/chemistry , Water Purification/methods , Biomass , Bacteria/metabolism , Wetlands , Biodegradation, Environmental
11.
Compr Rev Food Sci Food Saf ; 23(3): e13349, 2024 05.
Article in English | MEDLINE | ID: mdl-38638060

ABSTRACT

3D printing is an additive manufacturing technology that locates constructed models with computer-controlled printing equipment. To achieve high-quality printing, the requirements on rheological properties of raw materials are extremely restrictive. Given the special structure and high modifiability under external physicochemical factors, the rheological properties of proteins can be easily adjusted to suitable properties for 3D printing. Although protein has great potential as a printing material, there are many challenges in the actual printing process. This review summarizes the technical considerations for protein-based ink 3D printing. The physicochemical factors used to enhance the printing adaptability of protein inks are discussed. The post-processing methods for improving the quality of 3D structures are described, and the application and problems of fourth dimension (4D) printing are illustrated. The prospects of 3D printing in protein manufacturing are presented to support its application in food and cultured meat. The native structure and physicochemical factors of proteins are closely related to their rheological properties, which directly link with their adaptability for 3D printing. Printing parameters include extrusion pressure, printing speed, printing temperature, nozzle diameter, filling mode, and density, which significantly affect the precision and stability of the 3D structure. Post-processing can improve the stability and quality of 3D structures. 4D design can enrich the sensory quality of the structure. 3D-printed protein products can meet consumer needs for nutritional or cultured meat alternatives.


Subject(s)
Ink , Printing, Three-Dimensional , Food , In Vitro Meat , Meat Substitutes
12.
Braz J Anesthesiol ; 74(3): 844501, 2024.
Article in English | MEDLINE | ID: mdl-38583586

ABSTRACT

INTRODUCTION: Cardiac arrest or arrhythmia caused by bupivacaine may be refractory to treatment. Apelin has been reported to directly increase the frequency of spontaneous activation and the propagation of action potentials, ultimately promoting cardiac contractility. This study aimed to investigate the effects of apelin-13 in reversing cardiac suppression induced by bupivacaine in rats. METHODS: A rat model of cardiac suppression was established by a 3-min continuous intravenous infusion of bupivacaine at the rate of 5 mg.kg-1.min-1, and serial doses of apelin-13 (50, 150 and 450 µg.kg-1) were administered to rescue cardiac suppression to identify its dose-response relationship. We used F13A, an inhibitor of Angiotensin Receptor-Like 1 (APJ), and Protein Kinase C (PKC) inhibitor chelerythrine to reverse the effects of apelin-13. Moreover, the protein expressions of PKC, Nav1.5, and APJ in ventricular tissues were measured using Western blotting and immunofluorescence assay. RESULTS: Compared to the control rats, the rats subjected to continuous intravenous administration of bupivacaine had impaired hemodynamic stability. Administration of apelin-13, in a dose-dependent manner, significantly improved hemodynamic parameters in rats with bupivacaine-induced cardiac suppression (p < 0.05), and apelin-13 treatment also significantly upregulated the protein expressions of p-PKC and Nav1.5 (p < 0.05), these effects were abrogated by F13A or chelerythrine (p < 0.05). CONCLUSION: Exogenous apelin-13, at least in part, activates the PKC signaling pathway through the apelin/APJ system to improve cardiac function in a rat model of bupivacaine-induced cardiac suppression.


Subject(s)
Bupivacaine , Cardiotoxicity , Intercellular Signaling Peptides and Proteins , Rats, Sprague-Dawley , Animals , Bupivacaine/toxicity , Rats , Male , Intercellular Signaling Peptides and Proteins/pharmacology , Intercellular Signaling Peptides and Proteins/administration & dosage , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , Protein Kinase C/metabolism , Dose-Response Relationship, Drug , Anesthetics, Local/pharmacology , Disease Models, Animal , NAV1.5 Voltage-Gated Sodium Channel/metabolism , NAV1.5 Voltage-Gated Sodium Channel/drug effects , Receptors, G-Protein-Coupled/drug effects , Receptors, G-Protein-Coupled/metabolism , Apelin Receptors , Benzophenanthridines
13.
Environ Int ; 185: 108555, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38458119

ABSTRACT

High-throughput identification and cultivation of functional-yet-uncultivable microorganisms is a fundamental goal in environmental microbiology. It remains as a critical challenge due to the lack of routine and effective approaches. Here, we firstly proposed an approach of stable-isotope-probing and metagenomic-binning directed cultivation (SIP-MDC) to isolate and characterize the active phenanthrene degraders from petroleum-contaminated soils. From SIP and metagenome, we assembled 13 high-quality metagenomic bins from 13C-DNA, and successfully obtained the genome of an active PHE degrader Achromobacter (genome-MB) from 13C-DNA metagenomes, which was confirmed by gyrB gene comparison and average nucleotide/amino identity (ANI/AAI), as well as the quantification of PAH dioxygenase and antibiotic resistance genes. Thereinto, we modified the traditional cultivation medium with antibiotics and specific growth factors (e.g., vitamins and metals), and separated an active phenanthrene degrader Achromobacter sp. LJB-25 via directed isolation. Strain LJB-25 could degrade phenanthrene and its identity was confirmed by ANI/AAI values between its genome and genome-MB (>99 %). Our results hinted at the feasibility of SIP-MDC to identify, isolate and cultivate functional-yet-uncultivable microorganisms (active phenanthrene degraders) from their natural habitats. Our findings developed a state-of-the-art SIP-MDC approach, expanded our knowledge on phenanthrene biodegradation mechanisms, and proposed a strategy to mine functional-yet-uncultivable microorganisms.


Subject(s)
Phenanthrenes , Soil Pollutants , Metagenome , Phenanthrenes/metabolism , Isotopes , DNA , Biodegradation, Environmental , Soil Microbiology , Soil Pollutants/metabolism
14.
J Agric Food Chem ; 72(11): 5526-5541, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38457666

ABSTRACT

Peptide self-assembly, due to its diverse supramolecular nanostructures, excellent biocompatibility, and bright application prospects, has received wide interest from researchers in the fields of biomedicine and green life technology and the food industry. Driven by thermodynamics and regulated by dynamics, peptides spontaneously assemble into supramolecular structures with different functional properties. According to the functional properties derived from peptide self-assembly, applications and development directions in foods can be found and explored. Therefore, in this review, the regulatory mechanism is elucidated from the perspective of self-assembly thermodynamics and dynamics, and the functional properties and application progress of peptide self-assembly in foods are summarized, with a view to more adaptive application scenarios of peptide self-assembly in the food industry.


Subject(s)
Nanostructures , Peptides , Peptides/chemistry , Nanostructures/chemistry , Thermodynamics
15.
Addict Biol ; 29(2): e13361, 2024 02.
Article in English | MEDLINE | ID: mdl-38380780

ABSTRACT

BACKGROUND: The relationship between fibrosis-4 (FIB-4) index and all-cause mortality in critically ill patients with alcohol use disorder (AUD) is unclear. The present study aimed to investigate the predictive ability of FIB-4 for all-cause mortality in critically ill AUD patients and the association between them. METHODS: A total of 2528 AUD patients were included using the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. FIB-4 was calculated for each patient using the existing formula. The patients were equally divided into four groups based on the quartiles of FIB-4. Multivariate logistic regression and Cox proportional hazard model were used to evaluate the association of FIB-4 with in-hospital mortality, 28-day mortality and 1-year mortality. Kaplan-Meier curves were used to analyse the incidence of 28-day mortality among four groups. RESULTS: FIB-4 was positively associated with 28-day mortality of AUD patients with hazard ratio (HR) of 1.354 [95% confidence interval (CI) 1.192-1.538]. There were similar trends in the in-hospital mortality [odds ratio (OR): 1.440, 95% CI (1.239-1.674)] and 1-year mortality [HR: 1.325, 95% CI (1.178-1.490)]. CONCLUSION: Increased FIB-4 is associated with greater in-hospital mortality, 28-day mortality and 1-year mortality in critically ill AUD patients.


Subject(s)
Alcoholism , Humans , Critical Illness , Critical Care , Odds Ratio
16.
J Hazard Mater ; 465: 133293, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38141301

ABSTRACT

Autochthonous bioaugmentation and nutrient biostimulation are promising bioremediation methods for polycyclic aromatic hydrocarbons (PAHs) in contaminated agricultural soils, but little is known about their combined working mechanism. In this study, a microcosm trial was conducted to explore the combined mechanism of autochthonous fungal bioaugmentation and ammonium nitrogen biostimulation, using DNA stable-isotope-probing (DNA-SIP) and microbial network analysis. Both treatments significantly improved phenanthrene (PHE) removal, with their combined application producing the best results. The microbial community composition was notably altered by all bioremediation treatments, particularly the PHE-degrading bacterial and fungal taxa. Fungal bioaugmentation removed PAHs through extracellular enzyme secretion but reduced soil microbial diversity and ecological stability, while nitrogen biostimulation promoted PAH dissipation by stimulating indigenous soil degrading microbes, including fungi and key bacteria in the soil co-occurrence networks, ensuring the ecological diversity of soil microorganisms. The combination of both approaches proved to be the most effective strategy, maintaining a high degradation efficiency and relatively stable soil biodiversity through the secretion of lignin hydrolytic enzymes by fungi, and stimulating the reproduction of soil native degrading microbes, especially the key degraders in the co-occurrence networks. Our findings provide a fresh perspective of the synergy between fungal bioaugmentation and nitrogen biostimulation, highlighting the potential of this combined bioremediation approach for in situ PAH-contaminated soils.


Subject(s)
Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Soil Pollutants/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Biodegradation, Environmental , Soil , DNA , Soil Microbiology
17.
Braz. j. anesth ; 74(3): 844501, 2024. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1564100

ABSTRACT

Abstract Introduction: Cardiac arrest or arrhythmia caused by bupivacaine may be refractory to treatment. Apelin has been reported to directly increase the frequency of spontaneous activation and the propagation of action potentials, ultimately promoting cardiac contractility. This study aimed to investigate the effects of apelin-13 in reversing cardiac suppression induced by bupivacaine in rats. Methods: A rat model of cardiac suppression was established by a 3-min continuous intravenous infusion of bupivacaine at the rate of 5 mg.kg−1.min−1, and serial doses of apelin-13 (50, 150 and 450 μg.kg−1) were administered to rescue cardiac suppression to identify its dose-response relationship. We used F13A, an inhibitor of Angiotensin Receptor-Like 1 (APJ), and Protein Kinase C (PKC) inhibitor chelerythrine to reverse the effects of apelin-13. Moreover, the protein expressions of PKC, Nav1.5, and APJ in ventricular tissues were measured using Western blotting and immunofluorescence assay. Results: Compared to the control rats, the rats subjected to continuous intravenous administration of bupivacaine had impaired hemodynamic stability. Administration of apelin-13, in a dose-dependent manner, significantly improved hemodynamic parameters in rats with bupivacaine-induced cardiac suppression (p < 0.05), and apelin-13 treatment also significantly upregulated the protein expressions of p-PKC and Nav1.5 (p < 0.05), these effects were abrogated by F13A or chelerythrine (p < 0.05). Conclusion: Exogenous apelin-13, at least in part, activates the PKC signaling pathway through the apelin/APJ system to improve cardiac function in a rat model of bupivacaine-induced cardiac suppression.

18.
Crit Rev Food Sci Nutr ; : 1-17, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37218684

ABSTRACT

Condiments (such as sodium chloride and glutamate sodium) cause consumers to ingest too much sodium and may lead to a variety of diseases, thus decreasing their quality of life. Recently, a salt reduction strategy using flavor peptides has been established. However, the development of this strategy has not been well adopted by the food industry. There is an acute need to screen for peptides with salty and umami taste, and to understand their taste characteristic and taste mechanism. This review provides a thorough analysis of the literature on flavor peptides with sodium-reducing ability, involving their preparation, taste characteristic, taste mechanism and applications in the food industry. Flavor peptides come from a wide range of sources and can be sourced abundantly from natural foods. Flavor peptides with salty and umami tastes are mainly composed of umami amino acids. Differences in amino acid sequences, spatial structures and food matrices will cause different tastes in flavor peptides, mostly attributed to the interaction between peptides and taste receptors. In addition to being used in condiments, flavor peptides have also anti-hypertensive, anti-inflammatory and anti-oxidant abilities, offering the potential to be used as functional ingredients, thus making their future in the food industry extremely promising.

19.
J Genet Genomics ; 50(8): 589-599, 2023 08.
Article in English | MEDLINE | ID: mdl-36870415

ABSTRACT

Cytokinins influence many aspects of plant growth and development. Although cytokinin biosynthesis and signaling have been well studied in planta, little is known about the regulatory effects of epigenetic modifications on the cytokinin response. Here, we reveal that mutations to Morf Related Gene (MRG) proteins MRG1/MRG2, which are readers of trimethylated histone H3 lysine 4 and lysine 36 (H3K4me3 and H3K36me3), result in cytokinin hyposensitivity during various developmental processes, including callus induction and root and seedling growth inhibition. Similar to the mrg1 mrg2 mutant, plants with a defective AtTCP14, which belongs to the TEOSINTE BRANCHED, CYCLOIDEA, AND PROLIFERATING CELL FACTOR (TCP) transcription factor family, are insensitive to cytokinin. Furthermore, the transcription of several genes related to cytokinin signaling pathway is altered. Specifically, the expression of Arabidopsis thalianaHISTIDINE-CONTAINING PHOSPHOTRANSMITTER PROTEIN 2 (AHP2) decreases significantly in the mrg1 mrg2 and tcp14-2 mutants. We also confirm the interaction between MRG2 and TCP14 in vitro and in vivo. Thus, MRG2 and TCP14 can be recruited to AHP2 after recognizing H3K4me3/H3K36me3 markers and promote the histone-4 lysine-5 acetylation to further enhance AHP2 expression. In summary, our research elucidate a previously unknown mechanism mediating the effects of MRG proteins on the magnitude of the cytokinin response.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis/metabolism , Histones/genetics , Histones/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cytokinins/metabolism , Methylation , Lysine/metabolism , Gene Expression Regulation, Plant , Chromosomal Proteins, Non-Histone/genetics
20.
J Sci Food Agric ; 103(5): 2502-2511, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36606415

ABSTRACT

BACKGROUND: Surimi products occupy a large market in the food industry, and the gel performance is an important index to evaluate them. Thus, it is of great significance and practical value to find better food ingredients to regulate the structure and gel performance of surimi products. In this study, we used pea protein (PP) to restructure fish myofibrillar proteins (MPs) to achieve regulation of protein gel performance. RESULTS: PP could enhance MP gel performance in terms of compressive strength, water-holding capacity, and some texture parameters. This may be the result of an increasing ß-sheet content and a decreasing trend in the α-helix content, along with enhancements in hydrophobic interactions, nonspecific associations, and ionic bonds in a mixed PP-MP gel. The compressive strength, texture, and water-holding capacity of MP gel were positively correlated with surface hydrophobicity, active sulfhydryl, turbidity, and ß-sheet of the mixed PP-MP system. CONCLUSION: The findings suggest that PP can regulate the gel performance by remodeling the structure of MP. The regulation and correlation analysis between gel performance, structure, and physicochemical properties were explored and established to provide a theoretical basis for improving the quality of surimi products. This study will broaden the application of PP in the field of food processing and provide theoretical guidance for the manufacture of new surimi products. © 2023 Society of Chemical Industry.


Subject(s)
Pea Proteins , Animals , Gels/chemistry , Hot Temperature , Fish Proteins/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL