Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 466
Filter
1.
BMC Infect Dis ; 24(1): 691, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992583

ABSTRACT

BACKGROUND: Hemorrhagic varicella (HV) is a particular form of chicken pox.,with high mortality in adults. This form of the disease is rare, to date, approximately 4 cases have been reported. Occasional cases of HV have been documented in adults with hematologic disorders or other diseases. While there is one reported case of simultaneous reactivation of cytomegalovirus in an adult with chickenpox, there is a lack of information regarding changes in liver function indicators for such patients. This is unfortunate, as CMV reactivation can further exacerbate liver failure and increase mortality. In this report, we present a case of hemorrhagic varicella reactivation with cytomegalovirus and provide some relevant discussions. CASE PRESENTATION: We present the case of a 25-year-old male with HV, who had a history of nephrotic syndrome generally controlled with orally administered prednisone at a dosage of 50 mg per day for two months. The patient arrived at the emergency room with complaints of abdominal pain and the presence of hemorrhagic vesicles on his body for the past 3 days. Despite medical evaluation, a clear diagnosis was not immediately determined. Upon admission, the leukocyte count was recorded as 20.96 × 109/L on the first day, leading to the initiation of broad-spectrum antibiotic treatment. Despite the general interpretation that a positive IgG and a negative IgM indicate a previous infection, the patient's extraordinarily elevated IgG levels, coupled with a markedly increased CMV DNA quantification, prompted us to suspect a reactivation of the CMV virus. In light of these findings, we opted for the intravenous administration of ganciclovir as part of the treatment strategy. Unfortunately,,the patient succumbed to rapidly worsening symptoms and passed away. Within one week of the patient's demise, chickenpox gradually developed in the medical staff who had been in contact with him. In such instances, we speculate that the patient's diagnosis should be classified as a rare case of hemorrhagic varicella. CONCLUSION: Swift identification and timely administration of suitable treatment for adult HV are imperative to enhance prognosis.


Subject(s)
Chickenpox , Coinfection , Cytomegalovirus Infections , Cytomegalovirus , Humans , Male , Adult , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/virology , Cytomegalovirus Infections/diagnosis , Cytomegalovirus/isolation & purification , Chickenpox/drug therapy , Chickenpox/complications , Chickenpox/virology , Chickenpox/diagnosis , Coinfection/virology , Coinfection/drug therapy , Antiviral Agents/therapeutic use , Antiviral Agents/administration & dosage , Hemorrhage/virology , Hemorrhage/etiology , Herpesvirus 3, Human/isolation & purification , Virus Activation
2.
Phytomedicine ; 132: 155833, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39008915

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is the second most common cause of cancer-related mortality and is characterised by extensive invasive and metastatic potential. Previous studies have shown that vitexicarpin extracted from the fruits of Vitex rotundifolia can impede tumour progression. However, the molecular mechanisms involved in CRC treatment are still not fully established. PURPOSE: Our study aimed to investigate the anticancer activity, targets, and molecular mechanisms of vitexicarpin in CRC hoping to provide novel therapies for patients with CRC. STUDY DESIGN/METHODS: The impact of vitexicarpin on CRC was assessed through various experiments including MTT, clone formation, EDU, cell cycle, and apoptosis assays, as well as a tumour xenograft model. CETSA, label-free quantitative proteomics, and Biacore were used to identify the vitexicarpin targets. WB, Co-IP, Ubiquitination assay, IF, molecular docking, MST, and cell transfection were used to investigate the mechanism of action of vitexicarpin in CRC cells. Furthermore, we analysed the expression patterns and correlation of target proteins in TCGA and GEPIA datasets and clinical samples. Finally, wound healing, Transwell, tail vein injection model, and tissue section staining were used to demonstrate the antimetastatic effect of vitexicarpin on CRC in vitro and in vivo. RESULTS: Our findings demonstrated that vitexicarpin exhibits anticancer activity by directly binding to inosine monophosphate dehydrogenase 2 (IMPDH2) and that it promotes c-Myc ubiquitination by disrupting the interaction between IMPDH2 and c-Myc, leading to epithelial-mesenchymal transition (EMT) inhibition. Vitexicarpin hinders the migration and invasion of CRC cells by reversing EMT both in vitro and in vivo. Additionally, these results were validated by the overexpression and knockdown of IMPDH2 in CRC cells. CONCLUSION: These results demonstrated that vitexicarpin regulates the interaction between IMPDH2 and c-Myc to inhibit CRC proliferation and metastasis both in vitro and in vivo. These discoveries introduce potential molecular targets for CRC treatment and shed light on new mechanisms for c-Myc regulation in tumours.

3.
Proc Natl Acad Sci U S A ; 121(30): e2404164121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39012823

ABSTRACT

The development of advanced neural modulation techniques is crucial to neuroscience research and neuroengineering applications. Recently, optical-based, nongenetic modulation approaches have been actively investigated to remotely interrogate the nervous system with high precision. Here, we show that a thin-film, silicon (Si)-based diode device is capable to bidirectionally regulate in vitro and in vivo neural activities upon adjusted illumination. When exposed to high-power and short-pulsed light, the Si diode generates photothermal effects, evoking neuron depolarization and enhancing intracellular calcium dynamics. Conversely, low-power and long-pulsed light on the Si diode hyperpolarizes neurons and reduces calcium activities. Furthermore, the Si diode film mounted on the brain of living mice can activate or suppress cortical activities under varied irradiation conditions. The presented material and device strategies reveal an innovated optoelectronic interface for precise neural modulations.


Subject(s)
Neurons , Optogenetics , Silicon , Animals , Silicon/chemistry , Neurons/physiology , Mice , Optogenetics/methods , Calcium/metabolism , Light , Brain/physiology
4.
Drug Des Devel Ther ; 18: 2169-2187, 2024.
Article in English | MEDLINE | ID: mdl-38882048

ABSTRACT

Purpose: Traditional Chinese medicine (TCM) therapy is an important means to treat hepatocellular carcinoma (HCC), Astragalus (Latin name: Hedysarum Multijugum Maxim; Chinese name: Huangqi, HQ) and Atractylodes (Latin name: Atractylodes Macrocephala Koidz; Chinese name: Baizhu, BZ) (HQBZ), a classic herb pair, is often used in combination to HCC. However, the main components and potential mechanisms of HQBZ therapy in HCC remain unclear. This study aimed to identify the potential active ingredients and molecular mechanisms of action of HQBZ in HCC treatment. Methods: The HQBZ-Compound-Target-HCC network and HQBZ-HCC transcriptional regulatory network were constructed to screen the core active compound components and targets of HQBZ therapy for HCC. Molecular docking techniques are used to verify the stability of binding core active compound components to targets. GO and KEGG enrichment analysis were used to explore the signaling pathway of HQBZ in HCC treatment, the mechanism of HQBZ treatment of HCC was verified based on in vivo H22 tumor bearing mice and in vitro cell experiments. Results: Network pharmacology and molecular docking studies showed that HQBZ treatment of HCC was related to the targeted regulation of IL-6 and STAT3 by the active compound biatractylolide, KEGG pathway enrichment analysis suggest that HQBZ may play a role in the treatment of HCC through IL-6/STAT3 signaling pathway. In vitro experiment results proved that HQBZ could regulate IL-6/STAT3 signaling pathway transduction on CD8+T cells, inhibit CD8+T cell exhaustion and restore the function of exhausted CD8+T cells. In vivo experiment results proved that HQBZ can regulate IL-6/STAT3 signaling pathway transduction in H22 liver cancer model mouse tumor tissue, increased the proportion of tumor infiltrating CD8+T cells. Conclusion: This study found that HQBZ may play a therapeutic role in HCC by targeting IL-6 and STAT3 through biatractylolide, its mechanism of action is related to regulating IL-6/STAT3 signaling pathway, reversing T cell failure and increasing tumor infiltration CD8+T cells.


Subject(s)
Antineoplastic Agents, Phytogenic , Atractylodes , Carcinoma, Hepatocellular , Drugs, Chinese Herbal , Liver Neoplasms , Network Pharmacology , STAT3 Transcription Factor , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Animals , Humans , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Mice , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , Atractylodes/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Molecular Docking Simulation , Astragalus Plant/chemistry , Cell Proliferation/drug effects , Liver Neoplasms, Experimental/drug therapy , Liver Neoplasms, Experimental/pathology , Liver Neoplasms, Experimental/metabolism , Interleukin-6/metabolism , Interleukin-6/antagonists & inhibitors , Medicine, Chinese Traditional , Drug Screening Assays, Antitumor
5.
Int J Biol Macromol ; 274(Pt 2): 133463, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38944094

ABSTRACT

The membrane-associated RING-CH 8 protein (MARCH8), a member of the E3 ubiquitin ligase family, has broad-spectrum antiviral activity. However, some viruses hijack MARCH8 to promote virus replication, highlighting its dual role in the viral lifecycle. Most studies on MARCH8 have focused on RNA viruses, leaving its role in DNA viruses largely unexplored. Pseudorabies virus (PRV) is a large DNA virus that poses a potential threat to humans. In this study, we found that MARCH8 inhibited PRV replication at the cell-to-cell fusion stage. Interestingly, our findings proved that MARCH8 blocks gB cleavage by recruiting furin but this activity does not inhibit viral infection in vitro. Furthermore, we confirmed that MARCH8 inhibits cell-to-cell fusion independent of its E3 ubiquitin ligase activity but dependent on the interaction with the cell-to-cell fusion complex (gB, gD, gH, and gL). Finally, we discovered that the distribution of the cell-to-cell fusion complex is significantly altered and trapped within the trans-Golgi network. Overall, our results indicate that human MARCH8 acts as a potent antiviral host factor against PRV via trapping the cell-to-cell fusion complex in the trans-Golgi network.

6.
Vet Microbiol ; 295: 110164, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38936155

ABSTRACT

The membrane-associated RING-CH (MARCH) family of proteins are members of the E3 ubiquitin ligase family and are essential for a variety of biological functions. Currently, MARCH proteins are discovered to execute antiviral functions by directly triggering viral protein degradation or blocking the furin cleavage of viral class I fusion proteins. Here, we report a novel antiviral mechanism of MARCH1 and MARCH2 (MARCH1/2) in the replication of Pseudorabies virus (PRV), a member of the Herpesviridae family. We discovered MARCH1/2 restrict PRV replication at the cell-to-cell fusion step. Furthermore, MARCH1/2 block gB cleavage, and this is dependent on their E3 ligase activity. Interestingly, the blocking of gB cleavage by MARCH1/2 does not contribute to their antiviral activity in vitro. We discovered that MARCH1/2 are associated with the cell-to-cell fusion complex of gB, gD, gH, and gL and trap these viral proteins in the trans-Golgi network (TGN) rather than degrading them. Overall, we conclude that MARCH1/2 inhibit PRV by trapping the viral cell-to-cell fusion complex in TGN.


Subject(s)
Herpesvirus 1, Suid , Ubiquitin-Protein Ligases , Virus Replication , trans-Golgi Network , Herpesvirus 1, Suid/physiology , Animals , trans-Golgi Network/virology , trans-Golgi Network/metabolism , Ubiquitin-Protein Ligases/metabolism , Cell Fusion , Swine , Cell Line , Humans , Viral Proteins/metabolism , Viral Proteins/genetics , HEK293 Cells , Pseudorabies/virology
7.
Front Microbiol ; 15: 1291947, 2024.
Article in English | MEDLINE | ID: mdl-38915301

ABSTRACT

Introduction: Variability in microbial residues within soil aggregates are becoming progressively essential to the nutritive and sustainability of soils, and are therefore broadly regarded as an indispensable part of soil organic matter. It is unexplored how the widespread implementation of microbial fertilisers in agricultural production impacts soil organic nutrients, in particular the microbial residue fraction. Methods: We performed a three-year field experiment to verify the distinct impacts of microbial and organic fertilizers on carbon accumulation in soil microbial leftovers among aggregate fractions. Results: Microbial residual carbon was shown to decrease insignificantly during the application of microbial fertilizer and to rise marginally afterwards with the utilization of organic fertilizer. However, the combined effects of the two fertilizers had substantial impacts on the accumulation of microbial residual carbon. Changes in the structure of the fungi and bacteria shown in this study have implications for the short-term potential of microbial fertilizer shortages to permanent soil carbon sequestration. Additionally, our findings revealed variations in microbial residue accumulation across the microbial fertilizers, with Azotobacter chroococcum fertilizer being preferable to Bacillus mucilaginosus fertilizer due to its higher efficiency. In this scenario of nutrient addition, fungal residues may serve as the primary binding component or focal point for the production of new microaggregates, since the quantity of SOC provided by fungal residues increased while that supplied by bacterial residues decreased. Discussion: Our findings collectively suggested that the mechanisms behind the observed bacterial and fungal MRC (microbial residue carbon) responses to microbial fertilizer or organic fertilizer in bamboo forest soils are likely to be distinct. The application of microbial fertilizers for a limited duration led to a decline soil stable carbon pool, potentially influencing the regulation of soil nutrients in such hilly bamboo forests.

8.
J Agric Food Chem ; 72(23): 13186-13195, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38814711

ABSTRACT

Ketopantoate hydroxymethyltransferase (KPHMT) plays a pivotal role in d-pantothenic acid biosynthesis. Most KPHMTs are homodecamers with low thermal stability, posing challenges for protein engineering and limiting output enhancement. Previously, a high-enzyme activity KPHMT mutant (K25A/E189S) from Corynebacterium glutamicum was screened as mother strain (M0). Building upon this strain, our study focused on interface engineering modifications, employing a multifaceted approach including integrating folding-free energy calculation, B-factor analysis, and conserved site analysis. Preliminary screening led to the selection of five mutants in the interface─E106S, E98T, E98N, S247I, and S247D─showing improved thermal stability, culminating in the double-site mutant M8 (M0-E98N/S247D). M8 exhibited a T1/2 value of 288.79 min at 50 °C, showing a 3.29-fold increase compared to M0. Meanwhile, the Tm value of M8 was elevated from 53.2 to 59.6 °C. Investigations of structural and molecular dynamics simulations revealed alterations in surface electrostatic charge distribution and the formation of increased hydrogen bonds between subunits, contributing to enhanced thermal stability. This investigation corroborates the efficacy of interface engineering modifications in bolstering KPHMT stability while showing its potential for positively impacting industrial d-pantothenic acid synthesis.


Subject(s)
Bacterial Proteins , Corynebacterium glutamicum , Enzyme Stability , Protein Engineering , Corynebacterium glutamicum/enzymology , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Molecular Dynamics Simulation , Kinetics , Hot Temperature
9.
Biotechnol Adv ; 73: 108353, 2024.
Article in English | MEDLINE | ID: mdl-38593935

ABSTRACT

L-Cysteine and L-methionine, as the only two sulfur-containing amino acids among the canonical 20 amino acids, possess distinct characteristics and find wide-ranging industrial applications. The use of different organisms for fermentative production of L-cysteine and L-methionine is gaining increasing attention, with Escherichia coli being extensively studied as the preferred strain. This preference is due to its ability to grow rapidly in cost-effective media, its robustness for industrial processes, the well-characterized metabolism, and the availability of molecular tools for genetic engineering. This review focuses on the genetic and molecular mechanisms involved in the production of these sulfur-containing amino acids in E. coli. Additionally, we systematically summarize the metabolic engineering strategies employed to enhance their production, including the identification of new targets, modulation of metabolic fluxes, modification of transport systems, dynamic regulation strategies, and optimization of fermentation conditions. The strategies and design principles discussed in this review hold the potential to facilitate the development of strain and process engineering for direct fermentation of sulfur-containing amino acids.


Subject(s)
Escherichia coli , Fermentation , Metabolic Engineering , Metabolic Engineering/methods , Escherichia coli/genetics , Escherichia coli/metabolism , Cysteine/metabolism , Methionine/metabolism , Sulfur/metabolism , Amino Acids/metabolism
10.
Front Cell Infect Microbiol ; 14: 1376725, 2024.
Article in English | MEDLINE | ID: mdl-38590440

ABSTRACT

In China, porcine reproductive and respiratory syndrome virus (PRRSV) vaccines are widely used. These vaccines, which contain inactivated and live attenuated vaccines (LAVs), are produced by MARC-145 cells derived from the monkey kidney cell line. However, some PRRSV strains in MARC-145 cells have a low yield. Here, we used two type 2 PRRSV strains (CH-1R and HuN4) to identify the genes responsible for virus yield in MARC-145 cells. Our findings indicate that the two viruses have different spread patterns, which ultimately determine their yield. By replacing the viral envelope genes with a reverse genetics system, we discovered that the minor envelope proteins, from GP2a to GP4, play a crucial role in determining the spread pattern and yield of type 2 PRRSV in MARC-145 cells. The cell-free transmission pattern of type 2 PRRSV appears to be more efficient than the cell-to-cell transmission pattern. Overall, these findings suggest that GP2a to GP4 contributes to the spread pattern and yield of type 2 PRRSV.


Subject(s)
Guanidines , Piperazines , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Vaccines , Swine , Animals , Porcine respiratory and reproductive syndrome virus/genetics , Cell Line
11.
BMC Psychiatry ; 24(1): 263, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594663

ABSTRACT

BACKGROUND: Highly resilient adolescents with type 1 diabetes have been proved to achieve within-target glycemic outcomes and experience high quality of life. The ecological resilience model for adolescents with type 1 diabetes was developed in this study. It aims to increase our understanding of how resilience is both positively and negatively affected by internal and environmental ecological factors. METHODS: This cross-sectional study surveyed 460 adolescents with type 1 diabetes from 36 cities in 11 provinces, China. Participants completed self-report questionnaires on resilience, family functioning, peer support, peer stress, coping style, and demographics. Standard glycated hemoglobin tests were performed on the adolescents. Structural equation modeling was applied to analyze the data. RESULTS: The ecological resilience model for adolescents with type 1 diabetes was a good model with a high level of variance in resilience (62%). Family functioning was the most important predictor of resilience, followed by peer support, positive coping, and peer stress. Moreover, positive coping was the mediator of the relationship between family functioning and resilience. Positive coping and peer stress co-mediated the association between peer support and resilience. CONCLUSIONS: Family functioning, peer relationships, and positive coping are interrelated, which may jointly influence resilience. The findings provide a theoretical basis for developing resilience-promotion interventions for adolescents with type 1 diabetes, which may lead to health improvements during a vulnerable developmental period.


Subject(s)
Diabetes Mellitus, Type 1 , Resilience, Psychological , Humans , Adolescent , Cross-Sectional Studies , Quality of Life , Surveys and Questionnaires , Adaptation, Psychological
12.
Bioprocess Biosyst Eng ; 47(6): 841-850, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38676737

ABSTRACT

D-Allulose 3-epimerase (DAE) is a vital biocatalyst for the industrial synthesis of D-allulose, an ultra-low calorie rare sugar. However, limited thermostability of DAEs hinders their use at high-temperature production. In this research, hyperthermophilic TI-DAE (Tm = 98.4 ± 0.7 ℃) from Thermotoga sp. was identified via in silico screening. A comparative study of the structure and function of site-directed saturation mutagenesis mutants pinpointed the residue I100 as pivotal in maintaining the high-temperature activity and thermostability of TI-DAE. Employing TI-DAE as a biocatalyst, D-allulose was produced from D-fructose with a conversion rate of 32.5%. Moreover, TI-DAE demonstrated excellent catalytic synergy with glucose isomerase CAGI, enabling the one-step conversion of D-glucose to D-allulose with a conversion rate of 21.6%. This study offers a promising resource for the enzyme engineering of DAEs and a high-performance biocatalyst for industrial D-allulose production.


Subject(s)
Thermotoga , Thermotoga/enzymology , Thermotoga/genetics , Carbohydrate Epimerases/genetics , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/metabolism , Carbohydrate Epimerases/biosynthesis , Racemases and Epimerases/genetics , Racemases and Epimerases/metabolism , Racemases and Epimerases/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/biosynthesis , Fructose/metabolism , Fructose/biosynthesis , Fructose/chemistry , Enzyme Stability , Biocatalysis , Mutagenesis, Site-Directed , Hot Temperature
13.
BMC Psychiatry ; 24(1): 270, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605327

ABSTRACT

BACKGROUND: Adolescents with type 1 diabetes mellitus suffer from diabetes distress and poor health-related quality of life (HRQOL) since living with the condition that differentiates them from their peers. The present study investigated the effects of peer support and stress on diabetes distress and HRQOL and whether positive coping mediated the effects. METHODS: We used a prospective study design. A total of 201 adolescents with type 1 diabetes mellitus from 20 cities in 4 provinces were recruited.Participants complete two separate surveys at approximately 18-month intervals. The scales employed at both Time 1 and Time 2 included the Diabetes-Specific Peer Support Measure, Diabetes Stress Questionnaire for Youths, Simplified Coping Style Questionnaire, 5-item Problem Areas in Diabetes Scale, and the Diabetes Quality of Life for Youth scale. RESULTS: Baseline peer stress directly predicted diabetes distress and HRQOL at 18 months, even controlling for age, gender, and peer support. However, the direct effect of baseline peer support on 18-month diabetes distress and HRQOL was insignificant. Baseline peer support indirectly affected diabetes distress and HRQOL at 18 months through positive coping, indicating that positive coping plays a mediating role. CONCLUSION: The findings suggest that peer social relationships, especially peer stress, and positive coping are promising intervention targets for adolescents facing challenges in psychosocial adaptation.


Subject(s)
Diabetes Mellitus, Type 1 , Psychological Distress , Humans , Adolescent , Diabetes Mellitus, Type 1/psychology , Quality of Life/psychology , Longitudinal Studies , Adaptation, Psychological , Prospective Studies , Interpersonal Relations , Stress, Psychological/psychology
14.
Front Immunol ; 15: 1375864, 2024.
Article in English | MEDLINE | ID: mdl-38650927

ABSTRACT

Immunotherapy has emerged as the primary treatment modality for patients with advanced Hepatocellular carcinoma (HCC). However, its clinical efficacy remains limited, benefiting only a subset of patients, while most exhibit immune tolerance and face a grim prognosis. The infiltration of immune cells plays a pivotal role in tumor initiation and progression. In this study, we conducted an analysis of immune cell infiltration patterns in HCC patients and observed a substantial proportion of CD8+T cells. Leveraging the weighted gene co-expression network analysis (WGCNA), we identified 235 genes associated with CD8+T cell and constructed a risk prediction model. In this model, HCC patients were stratified into a high-risk and low-risk group. Patients in the high-risk group exhibited a lower survival rate, predominantly presented with intermediate to advanced stages of cancer, displayed compromised immune function, showed limited responsiveness to immunotherapy, and demonstrated elevated expression levels of the Notch signaling pathway. Further examination of clinical samples demonstrated an upregulation of the Notch1+CD8+T cell exhaustion phenotype accompanied by impaired cytotoxicity and cytokine secretion functions that worsened with increasing Notch activation levels. Our study not only presents a prognostic model but also highlights the crucial involvement of the Notch pathway in CD8+T cell exhaustion-a potential target for future immunotherapeutic interventions.


Subject(s)
CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular , Liver Neoplasms , Signal Transduction , Humans , CD8-Positive T-Lymphocytes/immunology , Liver Neoplasms/immunology , Liver Neoplasms/genetics , Liver Neoplasms/mortality , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , Prognosis , Receptors, Notch/genetics , Receptors, Notch/metabolism , Gene Expression Regulation, Neoplastic , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Female , Biomarkers, Tumor/genetics , Receptor, Notch1/genetics , Middle Aged
15.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 665-686, 2024 Mar 25.
Article in Chinese | MEDLINE | ID: mdl-38545970

ABSTRACT

Erythritol is a novel 4-carbon sugar alcohol produced by microbes in the presence of hyper-osmotic stress. It has excellent potential to serve as an alternative sugar for people with diabetes and also a platform compound for synthesizing various C4 compounds, such as 1, 3-butadiene, 1, 4-butanediol, 2, 5-dihydrofuran and so on. Compared with other polyols, the fermentative production of erythritol is more challenging. Yarrowia lipolytica is the preferred chassis of erythritol biosynthesis for its high-titer and high-productivity. At present, there are still some bottlenecks in the production of erythritol by Y. lipolytica, such as weak metabolic activity, abundant by-products, and low industrial attributes. Progress has been made in tailoring high version strains according to industrial needs. For example, the highest titer of erythritol produced by the metabolically engineered Y. lipolytica reached 196 g/L and 150 g/L, respectively, by using glucose or glycerol as the carbon sources. However, further improving its production performance becomes challenging. This review summarizes the research progress in the synthesis of erythritol by Y. lipolytica from the perspectives of erythritol producing strains, metabolic pathways, modular modifications, and auxiliary strategies to enhance the industrial properties of the engineered strain. Key nodes in the metabolic pathway and their combination strategies are discussed to guide the research on promoting the production of erythritol by Y. lipolytica.


Subject(s)
Yarrowia , Humans , Yarrowia/genetics , Yarrowia/metabolism , Erythritol/metabolism , Metabolic Engineering , Fermentation , Carbon/metabolism
16.
Ying Yong Sheng Tai Xue Bao ; 35(2): 457-468, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38523104

ABSTRACT

Exploring the tradeoff and synergy relationship among ecosystem services in the Yellow River Delta High-Efficiency Eco-Economic Zone is of great practical significance for regional ecosystem service function zoning and high-quality development. Using the InVEST model, spatial auto-correlation and trade-off synergism (ESTD) model, we analyzed the spatial and temporal variations of five ecosystem services (habitat quality, carbon storage, soil conservation, water conservation, and water purification), as well as their trade-off and synergistic relationships at the township scale from 2000 to 2020. The results showed that habitat quality, carbon storage, and nitrogen and phosphorus output decreased as a whole from 2000 to 2020, and soil conservation and water purification increased. Habitat quality showed a distribution pattern of high in the north and low in the south, and carbon sto-rage, nitrogen and phosphorus output, soil conservation and water purification showed a pattern of low in the north and high in the south. During the study period, synergistic relationships among the five ecosystem services were predominant in both time cross-section and time period, but there were still differences, with synergistic relationships mainly between carbon storage and other services in time cross-section, and between habitat quality and other ser-vices in time period. Our results can provide theoretical guidance and practical reference for the enhancement of ecosystem services and the zoning of ecosystem functions, as well as basic support for the optimization of spatial patterns of national territory.


Subject(s)
Ecosystem , Rivers , Conservation of Natural Resources/methods , Soil , Carbon , Nitrogen , Phosphorus , China
17.
Biotechnol J ; 19(2): e2300648, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38403408

ABSTRACT

L-Cysteine production through fermentation stands as a promising technology. However, excessive accumulation of L-cysteine poses a challenge due to the potential to inflict damage on cellular DNA. In this study, we employed a synergistic approach encompassing atmospheric and room temperature plasma mutagenesis (ARTP) and adaptive laboratory evolution (ALE) to improve L-cysteine tolerance in Escherichia coli. ARTP-treated populations obtained substantial enhancement in L-cysteine tolerance by ALE. Whole-genome sequencing, transcription analysis, and reverse engineering, revealed the pivotal role of an effective export mechanism mediated by gene eamB in augmenting L-cysteine resistance. The isolated tolerant strain, 60AP03/pTrc-cysEf , achieved a 2.2-fold increase in L-cysteine titer by overexpressing the critical gene cysEf during batch fermentation, underscoring its enormous potential for L-cysteine production. The production evaluations, supplemented with L-serine, further demonstrated the stability and superiority of tolerant strains in L-cysteine production. Overall, our work highlighted the substantial impact of the combined ARTP and ALE strategy in increasing the tolerance of E. coli to L-cysteine, providing valuable insights into improving L-cysteine overproduction, and further emphasized the potential of biotechnology in industrial production.


Subject(s)
Cysteine , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Cysteine/metabolism , Temperature , Mutagenesis , Fermentation
18.
Clin Case Rep ; 12(2): e8555, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38410658

ABSTRACT

The second distobuccal canal in the maxillary first molar is often missed because of the low prevalence rate (0%-4%). The article reports this kind of variation in one case. Promising outcomes have continued up to the present (2-year follow-up).

19.
J Hazard Mater ; 468: 133784, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38382338

ABSTRACT

The relationship between PM2.5 and metabolic diseases, including type 2 diabetes (T2D), has become increasingly prominent, but the molecular mechanism needs to be further clarified. To help understand the mechanistic association between PM2.5 exposure and human health, we investigated short-term PM2.5 exposure trajectory-related multi-omics characteristics from stool metagenome and metabolome and serum proteome and metabolome in a cohort of 3267 participants (age: 64.4 ± 5.8 years) living in Southern China. And then integrate these features to examine their relationship with T2D. We observed significant differences in overall structure in each omics and 193 individual biomarkers between the high- and low-PM2.5 groups. PM2.5-related features included the disturbance of microbes (carbohydrate metabolism-associated Bacteroides thetaiotaomicron), gut metabolites of amino acids and carbohydrates, serum biomarkers related to lipid metabolism and reducing n-3 fatty acids. The patterns of overall network relationships among the biomarkers differed between T2D and normal participants. The subnetwork membership centered on the hub nodes (fecal rhamnose and glycylproline, serum hippuric acid, and protein TB182) related to high-PM2.5, which well predicted higher T2D prevalence and incidence and a higher level of fasting blood glucose, HbA1C, insulin, and HOMA-IR. Our findings underline crucial PM2.5-related multi-omics biomarkers linking PM2.5 exposure and T2D in humans.


Subject(s)
Diabetes Mellitus, Type 2 , Adult , Middle Aged , Aged , Humans , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/metabolism , Multiomics , China/epidemiology , Biomarkers , Particulate Matter
20.
Innovation (Camb) ; 5(1): 100544, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38235188

ABSTRACT

Amyloid-ß, tau pathology, and biomarkers of neurodegeneration make up the core diagnostic biomarkers of Alzheimer disease (AD). However, these proteins represent only a fraction of the complex biological processes underlying AD, and individuals with other brain diseases in which AD pathology is a comorbidity also test positive for these diagnostic biomarkers. More AD-specific early diagnostic and disease staging biomarkers are needed. In this study, we performed tandem mass tag proteomic analysis of paired cerebrospinal fluid (CSF) and serum samples in a discovery cohort comprising 98 participants. Candidate biomarkers were validated by parallel reaction monitoring-based targeted proteomic assays in an independent multicenter cohort comprising 288 participants. We quantified 3,238 CSF and 1,702 serum proteins in the discovery cohort, identifying 171 and 860 CSF proteins and 37 and 323 serum proteins as potential early diagnostic and staging biomarkers, respectively. In the validation cohort, 58 and 21 CSF proteins, as well as 12 and 18 serum proteins, were verified as early diagnostic and staging biomarkers, respectively. Separate 19-protein CSF and an 8-protein serum biomarker panels were built by machine learning to accurately classify mild cognitive impairment (MCI) due to AD from normal cognition with areas under the curve of 0.984 and 0.881, respectively. The 19-protein CSF biomarker panel also effectively discriminated patients with MCI due to AD from patients with other neurodegenerative diseases. Moreover, we identified 21 CSF and 18 serum stage-associated proteins reflecting AD stages. Our findings provide a foundation for developing blood-based tests for AD screening and staging in clinical practice.

SELECTION OF CITATIONS
SEARCH DETAIL