Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech ; 168: 112039, 2024 May.
Article in English | MEDLINE | ID: mdl-38657434

ABSTRACT

Musculoskeletal simulations with muscle optimization aim to minimize muscle effort, hence are considered unable to predict the activation of antagonistic muscles. However, activation of antagonistic muscles might be necessary to satisfy the dynamic equilibrium. This study aims to elucidate under which conditions coactivation can be predicted, to evaluate factors modulating it, and to compare the antagonistic activations predicted by the lumbar spine model with literature data. Simple 2D and 3D models, comprising of 2 or 3 rigid bodies, with simple or multi-joint muscles, were created to study conditions under which muscle coactivity is predicted. An existing musculoskeletal model of the lumbar spine developed in AnyBody was used to investigate the effects of modeling intra-abdominal pressure (IAP), linear/cubic and load/activity-based muscle recruitment criterion on predicted coactivation during forward flexion and lateral bending. The predicted antagonist activations were compared to reported EMG data. Muscle coactivity was predicted with simplified models when multi-joint muscles were present or the model was three-dimensional. During forward flexion and lateral bending, the coactivation ratio predicted by the model showed good agreement with experimental values. Predicted coactivation was negligibly influenced by IAP but substantially reduced with a force-based recruitment criterion. The conditions needed in multi-body models to predict coactivity are: three-dimensionality or multi-joint muscles, unless perfect antagonists. The antagonist activations are required to balance 3D moments but do not reflect other physiological phenomena, which might explain the discrepancies between model predictions and experimental data. Nevertheless, the findings confirm the ability of the multi-body trunk models to predict muscle coactivity and suggest their overall validity.


Subject(s)
Models, Biological , Muscle, Skeletal , Humans , Muscle, Skeletal/physiology , Torso/physiology , Lumbar Vertebrae/physiology , Muscle Contraction/physiology , Electromyography , Computer Simulation , Biomechanical Phenomena
2.
PLoS One ; 18(10): e0293435, 2023.
Article in English | MEDLINE | ID: mdl-37889898

ABSTRACT

OBJECTIVE: To describe a study protocol for investigating the functional association between posture, spinal balance, ambulatory biomechanics, paraspinal muscle fatigue, paraspinal muscle quality and symptoms in patients with symptomatic lumbar spinal stenosis (sLSS) before and 1-year after elective surgical intervention. DESIGN: Single-centre prospective, experimental, multimodal (clinical, biomechanical, radiological) study with three instances of data collection: baseline (study visit 1), 6-month follow-up (remote) and 1-year follow-up (study visit 2). Both study visits include an in vivo experiment aiming to elicit paraspinal muscle fatigue for postural assessment in a non-fatigued and fatigued state. EXPERIMENTAL PROTOCOL: At baseline and 1-year follow-up, 122 patients with sLSS will be assessed clinically, perform the back-performance scale assessment and complete several patient-reported outcome measure (PROMs) questionnaires regarding overall health, disease-related symptoms and kinesiophobia. Posture and biomechanical parameters (joint kinematics, kinetics, surface electromyography, back curvature) will be recorded using an optoelectronic system and retroreflective markers during different tasks including overground walking and movement assessments before and after a modified Biering-Sørensen test, used to elicit paraspinal muscle fatigue. Measurements of muscle size and quality and the severity of spinal stenosis will be obtained using magnetic resonance imaging (MRI) and sagittal postural alignment data from EOS radiographies. After each study visit, physical activity level will be assessed during 9 days using a wrist-worn activity monitor. In addition, physical activity level and PROMs will be assessed remotely at 6-month follow-up. CONCLUSION: The multimodal set of data obtained using the study protocol described in this paper will help to expand our current knowledge on the pathophysiology, biomechanics, and treatment outcome of degenerative sLSS. The results of this study may contribute to defining and/or altering patient treatment norms, surgery indication criteria and post-surgery rehabilitation schedules. TRIAL REGISTRATION: The protocol was approved by the regional ethics committee and has been registered at clinicaltrials.gov (NCT05523388).


Subject(s)
Spinal Stenosis , Humans , Lumbar Vertebrae/surgery , Muscular Atrophy , Paraspinal Muscles , Prospective Studies , Radiography
SELECTION OF CITATIONS
SEARCH DETAIL