Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38663817

ABSTRACT

BACKGROUND: Alternaria alternata is associated with allergic respiratory diseases, which can be managed with allergen extract-based diagnostics and immunotherapy. It is not known how spores and hyphae contribute to allergen content. Commercial allergen extracts are manufactured by extracting proteins without separating the different forms of the fungus. OBJECTIVE: We sought to determine differences between spore and hyphae proteomes and how allergens are distributed in Aalternata. METHODS: Data-independent acquisition mass spectrometry was used to quantitatively compare the proteomes of asexual spores (nongerminating and germinating) with vegetative hyphae. RESULTS: We identified 4515 proteins in nongerminating spores, germinating spores, and hyphae; most known allergens are more abundant in nongerminating spores. On comparing significant protein fold-change differences between nongerminating spores and hyphae, we found that 174 proteins were upregulated in nongerminating spores and 80 proteins in hyphae. Among the spore proteins are ones functionally involved in cell wall synthesis, responding to cellular stress, and maintaining redox balance and homeostasis. On comparing nongerminating and germinating spores, 25 proteins were found to be upregulated in nongerminating spores and 54 in germinating spores. Among the proteins specific to germinating spores were proteases known to be virulence factors. One of the most abundant proteins in the spore proteome is sialidase, which has not been identified as an allergen but may be important in the pathogenicity of this fungus. Major allergen Alt a 1 is present at low levels in spores and hyphae and appears to be largely secreted into growth media. CONCLUSIONS: Spores and hyphae express overlapping but distinct proteomes. Most known allergens are found more abundantly in nongerminating spores.

2.
Molecules ; 28(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38067505

ABSTRACT

The treatment of dermatophytoses, the most common human fungal infections, requires new alternatives. The aim of this study was to determine the antidermatophytic activity of the aqueous Azorean Black Tea extract (ABT), together with an approach to the mechanisms of action. The phytochemical analysis of ABT extract was performed by HPLC. The dermatophytes susceptibility was assessed using a broth microdilution assay; potential synergies with terbinafine and griseofulvin were evaluated by the checkerboard assay. The mechanism of action was appraised by the quantification of the fungal cell wall chitin and ß-1,3-glucan, and by membrane ergosterol. The presence of ultrastructural modifications was studied by Transmission Electron Microscopy (TEM). The ABT extract contained organic and phenolic acids, flavonoids, theaflavins and alkaloids. It showed an antidermatophytic effect, with MIC values of 250 µg/mL for Trichophyton mentagrophytes, 125 µg/mL for Trichophyton rubrum and 500 µg/mL for Microsporum canis; at these concentrations, the extract was fungicidal. An additive effect of ABT in association to terbinafine on these three dermatophytes was observed. The ABT extract caused a significant reduction in ß-1,3-glucan content, indicating the synthesis of this cell wall component as a possible target. The present study identifies the antidermatophytic activity of the ABT and highlights its potential to improve the effectiveness of conventional topical treatment currently used for the management of skin or mucosal fungal infections.


Subject(s)
Arthrodermataceae , Camellia sinensis , Fungicides, Industrial , Mycoses , Humans , Antifungal Agents/chemistry , Terbinafine/pharmacology , Tea , Microbial Sensitivity Tests , Fungicides, Industrial/pharmacology , Plant Extracts/pharmacology , Mycoses/drug therapy , Trichophyton
3.
Microorganisms ; 11(2)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36838208

ABSTRACT

Coffee is one of the most popular and consumed products in the world, generating tons of solid waste known as spent coffee grounds (SCG), containing several bioactive compounds. Here, the antifungal activity of ethanolic SCG extract from caffeinated and decaffeinated coffee capsules was evaluated against yeasts and filamentous fungi. These extracts had antifungal activity against Candida krusei, Candida parapsilosis, Trichophyton mentagrophytes, and Trichophyton rubrum, all skin fungal agents. Moreover, SCG had fungicidal activity against T. mentagrophytes and T. rubrum. To understand the underlying mechanisms of the antifungal activity, fungal cell membrane and cell wall components were quantified. SCG caused a significant reduction of the ergosterol, chitin, and ß-(1,3)-glucan content of C. parapsilosis, revealing the synthesis of this membrane component and cell wall components as possible targets of these extracts. These extracts were cytotoxic for the tumoral cell lines tested but not for the non-tumoral PLP2 cell line. The analysis of the phenolic compounds of these extracts revealed the presence of caffeoylquinic acid, feruloylquinic acid, and caffeoylshikimic acid derivatives. Overall, this confirmed the antifungal activity of spent coffee grounds, presenting a potential increase in the sustainability of the life cycle of coffee grounds, as a source for the development of novel antifungal formulations, especially for skin or mucosal fungal infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...