Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 10: 1614, 2019.
Article in English | MEDLINE | ID: mdl-31921258

ABSTRACT

Alternative Splicing (AS) is a mechanism that generates different mature transcripts from precursor mRNAs (pre-mRNAs) of the same gene. In plants, a wide range of physiological and metabolic events are related to AS, as well as fast responses to changes in temperature. AS is present in around 60% of intron-containing genes in Arabidopsis, 46% in rice, and 38% in maize and it is widespread among the circadian clock genes. Little is known about how AS influences the circadian clock of C4 plants, like commercial sugarcane, a C4 crop with a complex hybrid genome. This work aims to test if the daily dynamics of AS forms of circadian clock genes are regulated by environmental factors, such as temperature, in the field. A systematic search for AS in five sugarcane clock genes, ScLHY, ScPRR37, ScPRR73, ScPRR95, and ScTOC1 using different organs of sugarcane sampled during winter, with 4 months old plants, and during summer, with 9 months old plants, revealed temperature- and organ-dependent expression of at least one alternatively spliced isoform in all genes. Expression of AS isoforms varied according to the season. Our results suggest that AS events in circadian clock genes are correlated with temperature.

2.
J Integr Plant Biol ; 51(8): 719-26, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19686369

ABSTRACT

The pistil, the female reproductive organ of plants, is a key player in the success of sexual plant reproduction. Ultimately, the production of fruits and seeds depends on the proper pistil development and function. Therefore, the identification and characterization of pistil expressed genes is essential for a better understanding and manipulation of the plant reproduction process. For studying the function of pistil expressed genes, transgenic and/or mutant plants for the genes of interest are used. The present article provides a review of methods already exploited to analyze sexual reproductive success. We intend to supply useful information and to guide future experiments in the study of genes affecting pistil development and function.


Subject(s)
Mutation/genetics , Plants, Genetically Modified/physiology , Reproduction/physiology , Flowers/genetics , Flowers/metabolism , Flowers/physiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Reproduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL