Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 13: 1134471, 2023.
Article in English | MEDLINE | ID: mdl-37313339

ABSTRACT

A variety of intestinal-derived culture systems have been developed to mimic in vivo cell behavior and organization, incorporating different tissue and microenvironmental elements. Great insight into the biology of the causative agent of toxoplasmosis, Toxoplasma gondii, has been attained by using diverse in vitro cellular models. Nonetheless, there are still processes key to its transmission and persistence which remain to be elucidated, such as the mechanisms underlying its systemic dissemination and sexual differentiation both of which occur at the intestinal level. Because this event occurs in a complex and specific cellular environment (the intestine upon ingestion of infective forms, and the feline intestine, respectively), traditional reductionist in vitro cellular models fail to recreate conditions resembling in vivo physiology. The development of new biomaterials and the advances in cell culture knowledge have opened the door to a next generation of more physiologically relevant cellular models. Among them, organoids have become a valuable tool for unmasking the underlying mechanism involved in T. gondii sexual differentiation. Murine-derived intestinal organoids mimicking the biochemistry of the feline intestine have allowed the generation of pre-sexual and sexual stages of T. gondii for the first time in vitro, opening a window of opportunity to tackling these stages by "felinizing" a wide variety of animal cell cultures. Here, we reviewed intestinal in vitro and ex vivo models and discussed their strengths and limitations in the context of a quest for faithful models to in vitro emulate the biology of the enteric stages of T. gondii.


Subject(s)
Toxoplasma , Animals , Cats , Mice , Sex Differentiation , Intestines , Intestinal Mucosa , Biology
2.
J Biomol Struct Dyn ; 41(4): 1414-1423, 2023 03.
Article in English | MEDLINE | ID: mdl-34994278

ABSTRACT

Nuclear receptors are ligand-activated transcription factors capable of regulating the expression of complex gene networks. The family includes seven subfamilies of protein with a wide phylogenetic distribution. A novel subfamily with two DNA-binding domains (2DBDs) has been first reported in Schistosoma mansoni (Platyhelminth, Trematoda). Employing an ab initio protocol and homology modeling methods, the full-length 3D structure of the Eg2DBDα.1 nuclear receptor from Echinococcus granulosus (Platyhelminth, Cestoda) was generated. The model analysis reveals the presence of the conserved three-layered alpha-helical sandwich structure in the ligand binding domain, and a particularly long and flexible hinge region. Molecular dynamics simulations were performed previous to dock a conformational library of fatty acids and retinoic acids. Our results indicate that oleic and linoleic acids are suitable ligands to this receptor. The ligand-protein complex is stabilized mainly by hydrogen bonds and hydrophobic interactions. The fact that 2DBD nuclear receptors have not been identified in vertebrates confers particular interest to these nuclear receptors, not only concerning their structure and function but as targets of new anthelmintic drugs.Communicated by Ramaswamy H. Sarma.


Subject(s)
Echinococcus granulosus , Animals , Echinococcus granulosus/metabolism , Molecular Dynamics Simulation , Phylogeny , Ligands , Helminth Proteins/chemistry , Receptors, Cytoplasmic and Nuclear , Molecular Docking Simulation
3.
Biomolecules ; 12(3)2022 03 16.
Article in English | MEDLINE | ID: mdl-35327648

ABSTRACT

Myelination of the peripheral nervous system requires Schwann cells (SC) differentiation into the myelinating phenotype. The peripheral myelin protein-22 (PMP22) is an integral membrane glycoprotein, expressed in SC. It was initially described as a growth arrest-specific (gas3) gene product, up-regulated by serum starvation. PMP22 mutations were pathognomonic for human hereditary peripheral neuropathies, including the Charcot-Marie-Tooth disease (CMT). Trembler-J (TrJ) is a heterozygous mouse model carrying the same pmp22 point mutation as a CMT1E variant. Mutations in lamina genes have been related to a type of peripheral (CMT2B1) or central (autosomal dominant leukodystrophy) neuropathy. We explore the presence of PMP22 and Lamin B1 in Wt and TrJ SC nuclei of sciatic nerves and the colocalization of PMP22 concerning the silent heterochromatin (HC: DAPI-dark counterstaining), the transcriptionally active euchromatin (EC), and the nuclear lamina (H3K4m3 and Lamin B1 immunostaining, respectively). The results revealed that the number of TrJ SC nuclei in sciatic nerves was greater, and the SC volumes were smaller than those of Wt. The myelin protein PMP22 and Lamin B1 were detected in Wt and TrJ SC nuclei and predominantly in peripheral nuclear regions. The level of PMP22 was higher, and those of Lamin B1 lower in TrJ than in Wt mice. The level of PMP22 was higher, and those of Lamin B1 lower in TrJ than in Wt mice. PMP22 colocalized more with Lamin B1 and with the transcriptionally competent EC, than the silent HC with differences between Wt and TrJ genotypes. The results are discussed regarding the probable nuclear role of PMP22 and the relationship with TrJ neuropathy.


Subject(s)
Charcot-Marie-Tooth Disease , Myelin Proteins , Schwann Cells , Animals , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/metabolism , Lamin Type B/genetics , Lamin Type B/metabolism , Mice , Myelin Proteins/genetics , Myelin Proteins/metabolism , Schwann Cells/metabolism
4.
Eur J Pharmacol ; 871: 172926, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31958456

ABSTRACT

Neurodegenerative diseases affect millions of people around the world. Several studies point out caspase-3 as a key player in the development and progression of neurological disorders including amyotrophic lateral sclerosis, Alzheimer's, Parkinson's and Huntington's diseases. Furthermore, oxidative stress and mitochondrial dysfunction plays an important role in neurodegenerative pathologies leading to neuronal damage and cell death. Pharmacological properties of nitrones such as free radical trapping and neuroprotection has been previously described. In the present work, we have assessed ten non-cytotoxic nitrones for their ability to inhibit apoptosis plus their potential to reduce active caspase-3 and oxidative stress in the hippocampal neuronal cell line HT22. Our results highlight the faculty of nitrones to inhibit apoptosis by a mechanism that involves active caspase-3 reduction and decrease of reactive oxygen species. Moreover, docking and molecular dynamics approaches lead to a detailed analysis at the atomic level of the nitrones binding mode to caspase-3 suggesting that compounds bind in a region close to the catalytic site. All these data place these molecules as excellent hits for further efforts to redesign novel compounds in the search of a new therapy against neurodegenerative disorders.


Subject(s)
Antioxidants/pharmacology , Computer Simulation , Neuroprotective Agents/pharmacology , Nitrogen Oxides/pharmacology , Animals , Antioxidants/metabolism , Apoptosis/drug effects , Caspase 3/chemistry , Caspase 3/metabolism , Cell Line , Cell Survival/drug effects , Hippocampus/cytology , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , Neuroprotective Agents/antagonists & inhibitors , Neuroprotective Agents/chemistry , Neuroprotective Agents/metabolism , Nitrogen Oxides/metabolism , Protein Conformation
5.
PLoS One ; 14(11): e0224703, 2019.
Article in English | MEDLINE | ID: mdl-31710619

ABSTRACT

Nuclear receptors are ligand-activated transcription factors capable of regulating the expression of complex gene networks. The family includes seven subfamilies of proteins with a wide phylogenetic distribution. A novel subfamily with two DNA-binding domains (2DBDs) has been reported in Schistosoma mansoni (Platyhelminth, Trematoda). This work describes the cDNA cloning and bioinformatics analysis of Eg2DBDα, a 2DBD nuclear receptor isoform from the parasite Echinococcus granulosus (Platyhelminth, Cestoda). The Eg2DBDα gene coding domain structure was analysed. Although two additional 2DBD nuclear receptors are reported in the parasite database GeneDB, they are unlikely to be expressed in the larval stage. Phylogenetic relationships between these atypical proteins from different cestodes are also analysed including S. mansoni 2DBD nuclear receptors. The presence of two DNA binding domains confers particular interest to these nuclear receptors, not only concerning their function but to the development of new antihelminthic drugs.


Subject(s)
Echinococcus granulosus/metabolism , Helminth Proteins/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Computational Biology , Echinococcus granulosus/genetics , Helminth Proteins/genetics , Phylogeny , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, Cytoplasmic and Nuclear/genetics
SELECTION OF CITATIONS
SEARCH DETAIL