Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(13): 131004, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38613261

ABSTRACT

We present first results from a dark photon dark matter search in the mass range from 44 to 52 µeV (10.7-12.5 GHz) using a room-temperature dish antenna setup called GigaBREAD. Dark photon dark matter converts to ordinary photons on a cylindrical metallic emission surface with area 0.5 m^{2} and is focused by a novel parabolic reflector onto a horn antenna. Signals are read out with a low-noise receiver system. A first data taking run with 24 days of data does not show evidence for dark photon dark matter in this mass range, excluding dark photon photon mixing parameters χ≳10^{-12} in this range at 90% confidence level. This surpasses existing constraints by about 2 orders of magnitude and is the most stringent bound on dark photons in this range below 49 µeV.

2.
Rev Sci Instrum ; 93(4): 044709, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35489924

ABSTRACT

We introduce a Xilinx RF System-on-Chip (RFSoC)-based qubit controller (called the Quantum Instrumentation Control Kit, or QICK for short), which supports the direct synthesis of control pulses with carrier frequencies of up to 6 GHz. The QICK can control multiple qubits or other quantum devices. The QICK consists of a digital board hosting an RFSoC field-programmable gate array, custom firmware, and software and an optional companion custom-designed analog front-end board. We characterize the analog performance of the system as well as its digital latency, important for quantum error correction and feedback protocols. We benchmark the controller by performing standard characterizations of a transmon qubit. We achieve an average gate fidelity of Favg=99.93%. All of the schematics, firmware, and software are open-source.

3.
Phys Rev Lett ; 127(24): 241101, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34951780

ABSTRACT

Image sensors with nondestructive charge readout provide single-photon or single-electron sensitivity, but at the cost of long readout times. We present a smart readout technique to allow the use of these sensors in visible light and other applications that require faster readout times. The method optimizes the readout noise and time by changing the number of times pixels are read out either statically, by defining an arbitrary number of regions of interest in the array, or dynamically, depending on the charge or energy of interest in the pixel. This technique is tested in a Skipper CCD showing that it is possible to obtain deep subelectron noise, and therefore, high resolution of quantized charge, while dynamically changing the readout noise of the sensor. These faster, low noise readout techniques show that the skipper CCD is a competitive technology even where other technologies such as electron multiplier charge coupled devices, silicon photo multipliers, etc. are currently used. This technique could allow skipper CCDs to benefit new astronomical instruments, quantum imaging, exoplanet search and study, and quantum metrology.

4.
Rev Sci Instrum ; 91(12): 124705, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33379935

ABSTRACT

We present the development of a second generation digital readout system for photon counting microwave kinetic inductance detector (MKID) arrays operating in the optical and near-infrared wavelength bands. Our system retains much of the core signal processing architecture from the first generation system but with a significantly higher bandwidth, enabling the readout of kilopixel MKID arrays. Each set of readout boards is capable of reading out 1024 MKID pixels multiplexed over 2 GHz of bandwidth; two such units can be placed in parallel to read out a full 2048 pixel microwave feedline over a 4 GHz-8 GHz band. As in the first generation readout, our system is capable of identifying, analyzing, and recording photon detection events in real time with a time resolution of order a few microseconds. Here, we describe the hardware and firmware, and present an analysis of the noise properties of the system. We also present a novel algorithm for efficiently suppressing IQ mixer sidebands to below -30 dBc.

5.
Phys Rev Lett ; 125(17): 171802, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33156657

ABSTRACT

We present the first direct-detection search for sub-GeV dark matter using a new ∼2-gram high-resistivity Skipper CCD from a dedicated fabrication batch that was optimized for dark matter searches. Using 24 days of data acquired in the MINOS cavern at the Fermi National Accelerator Laboratory, we measure the lowest rates in silicon detectors of events containing one, two, three, or four electrons, and achieve world-leading sensitivity for a large range of sub-GeV dark matter masses. Data taken with different thicknesses of the detector shield suggest a correlation between the rate of high-energy tracks and the rate of single-electron events previously classified as "dark current." We detail key characteristics of the new Skipper CCDs, which augur well for the planned construction of the ∼100-gram SENSEI experiment at SNOLAB.

SELECTION OF CITATIONS
SEARCH DETAIL
...