Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Cell Surf ; 10: 100115, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38024561

ABSTRACT

Across all kingdoms of life, cells secrete an extracellular polymer mesh that in turn feeds back onto them. This entails physical connections between the plasma membrane and the polymer mesh. In plant cells, one connection stands out: the Hechtian strand which, during plasmolysis, reflects the existence of a physical link between the plasma membrane of the retracting protoplast and the cell wall. The Hechtian strand is part of a larger structure, which we call the Hechtian structure, that comprises the Hechtian strand, the Hechtian reticulum and the Hechtian attachment sites. Although it has been observed for more than 100 years, its molecular composition and biological functions remain ill-described. A comprehensive characterization of the Hechtian structure is a critical step towards understanding this plasma membrane-cell wall connection and its relevance in cell signaling. This short review intends to highlight the main features of the Hechtian structure, in order to provide a clear framework for future research in this under-explored and promising field.

2.
Plants (Basel) ; 11(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36559666

ABSTRACT

The Arabidopsis PROSCOOP genes belong to a family predicted to encode secreted pro-peptides, which undergo maturation steps to produce peptides named SCOOP. Some of them are involved in defence signalling through their perception by a receptor complex including MIK2, BAK1 and BKK1. Here, we focused on the PROSCOOP10 gene, which is highly and constitutively expressed in aerial organs. The MS/MS analyses of leaf apoplastic fluids allowed the identification of two distinct peptides (named SCOOP10#1 and SCOOP10#2) covering two different regions of PROSCOOP10. They both possess the canonical S-X-S family motif and have hydroxylated prolines. This identification in apoplastic fluids confirms the biological reality of SCOOP peptides for the first time. NMR and molecular dynamics studies showed that the SCOOP10 peptides, although largely unstructured in solution, tend to assume a hairpin-like fold, exposing the two serine residues previously identified as essential for the peptide activity. Furthermore, PROSCOOP10 mutations led to an early-flowering phenotype and increased expression of the floral integrators SOC1 and LEAFY, consistent with the de-regulated transcription of PROSCOOP10 in several other mutants displaying early- or late-flowering phenotypes. These results suggest a role for PROSCOOP10 in flowering time, highlighting the functional diversity within the PROSCOOP family.

3.
Int J Mol Sci ; 23(8)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35457091

ABSTRACT

Plant cell wall proteins (CWPs) play critical roles during plant development and in response to stresses. Proteomics has revealed their great diversity. With nearly 1000 identified CWPs, the Arabidopsis thaliana cell wall proteome is the best described to date and it covers the main plant organs and cell suspension cultures. Other monocot and dicot plants have been studied as well as bryophytes, such as Physcomitrella patens and Marchantia polymorpha. Although these proteomes were obtained using various flowcharts, they can be searched for the presence of members of a given protein family. Thereby, a core cell wall proteome which does not pretend to be exhaustive, yet could be defined. It comprises: (i) glycoside hydrolases and pectin methyl esterases, (ii) class III peroxidases, (iii) Asp, Ser and Cys proteases, (iv) non-specific lipid transfer proteins, (v) fasciclin arabinogalactan proteins, (vi) purple acid phosphatases and (vii) thaumatins. All the conserved CWP families could represent a set of house-keeping CWPs critical for either the maintenance of the basic cell wall functions, allowing immediate response to environmental stresses or both. Besides, the presence of non-canonical proteins devoid of a predicted signal peptide in cell wall proteomes is discussed in relation to the possible existence of alternative secretion pathways.


Subject(s)
Arabidopsis , Bryopsida , Arabidopsis/metabolism , Bryopsida/metabolism , Cell Wall/metabolism , Plant Proteins/metabolism , Plants/metabolism , Proteome/metabolism , Proteomics
4.
Front Plant Sci ; 12: 765846, 2021.
Article in English | MEDLINE | ID: mdl-35095945

ABSTRACT

Primary plant cell walls are composite extracellular structures composed of three major classes of polysaccharides (pectins, hemicelluloses, and cellulose) and of proteins. The cell wall proteins (CWPs) play multiple roles during plant development and in response to environmental stresses by remodeling the polysaccharide and protein networks and acting in signaling processes. To date, the cell wall proteome has been mostly described in flowering plants and has revealed the diversity of the CWP families. In this article, we describe the cell wall proteome of an early divergent plant, Marchantia polymorpha, a Bryophyte which belong to one of the first plant species colonizing lands. It has been possible to identify 410 different CWPs from three development stages of the haploid gametophyte and they could be classified in the same functional classes as the CWPs of flowering plants. This result underlied the ability of M. polymorpha to sustain cell wall dynamics. However, some specificities of the M. polymorpha cell wall proteome could be highlighted, in particular the importance of oxido-reductases such as class III peroxidases and polyphenol oxidases, D-mannose binding lectins, and dirigent-like proteins. These proteins families could be related to the presence of specific compounds in the M. polymorpha cell walls, like mannans or phenolics. This work paves the way for functional studies to unravel the role of CWPs during M. polymorpha development and in response to environmental cues.

5.
Plant Physiol Biochem ; 157: 441-452, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33212361

ABSTRACT

An efficient purification of recombinant proteins often requires a high ratio of recombinant to host proteins. In plants, Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the most abundant leaf protein, thus strongly impacting purification yield. Here, we describe a simple and robust purification procedure for recombinant proteins based on a differential precipitation of RuBisCO. In this context, four Legume lectin domains of Arabidopsis thaliana which belong to receptor-like kinases and cell wall proteins were produced from Nicotiana benthamiana leaves. The recombinant proteins exhibit a unique lectin domain consisting of around 250 amino acid residues with several predicted N-glycosylation sites and a six His-tag at the N-terminus. After ammonium sulphate precipitation of total soluble proteins, depletion of RuBisCO was obtained using citrate and succinate buffers during the salting-in step: this depletion was pH-dependent and the presence of di- or tri-carboxylic acids was required. The depleted protein extracts were then subjected to two chromatographic steps which were used in the negative mode to submit a protein fraction enriched as much as possible in recombinant lectin domains to a third chromatographic step (immobilized metal-ion chromatography). Three of the Legume lectin domains were purified near to homogeneity and revealed multiple N-glycosylation isoforms, particularly those from receptor-like kinases, which were characterised using specific lectins and deglycosylation enzymes. The production and purification of recombinant lectin domains will facilitate their biochemical characterisation in the context of cell-to-cell signalling and cell wall organisation.


Subject(s)
Fabaceae/chemistry , Lectins/biosynthesis , Nicotiana/metabolism , Ribulose-Bisphosphate Carboxylase , Glycosylation , Plant Leaves/metabolism , Plants, Genetically Modified/metabolism , Protein Isoforms/biosynthesis , Recombinant Proteins/biosynthesis , Ribulose-Bisphosphate Carboxylase/metabolism , Nicotiana/genetics
6.
Int J Mol Sci ; 18(6)2017 May 31.
Article in English | MEDLINE | ID: mdl-28561754

ABSTRACT

Lectins are fundamental to plant life and have important roles in cell-to-cell communication; development and defence strategies. At the cell surface; lectins are present both as soluble proteins (LecPs) and as chimeric proteins: lectins are then the extracellular domains of receptor-like kinases (LecRLKs) and receptor-like proteins (LecRLPs). In this review; we first describe the domain architectures of proteins harbouring G-type; L-type; LysM and malectin carbohydrate-binding domains. We then focus on the functions of LecPs; LecRLKs and LecRLPs referring to the biological processes they are involved in and to the ligands they recognize. Together; LecPs; LecRLKs and LecRLPs constitute versatile recognition systems at the cell surface contributing to the detection of symbionts and pathogens; and/or involved in monitoring of the cell wall structure and cell growth.


Subject(s)
Plant Lectins/genetics , Plant Proteins/genetics , Protein Kinases/genetics , Receptors, Mitogen/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Phylogeny , Plant Lectins/metabolism , Plant Proteins/classification , Plant Proteins/metabolism , Protein Interaction Domains and Motifs/genetics , Protein Kinases/metabolism , Receptors, Mitogen/metabolism , Signal Transduction/genetics
7.
Mol Plant Pathol ; 18(7): 937-948, 2017 09.
Article in English | MEDLINE | ID: mdl-27399963

ABSTRACT

On microbial attack, plants can detect invaders and activate plant innate immunity. For the detection of pathogen molecules or cell wall damage, plants employ receptors that trigger the activation of defence responses. Cell surface proteins that belong to large families of lectin receptor kinases are candidates to function as immune receptors. Here, the function of LecRK-I.9 (At5g60300), a legume-type lectin receptor kinase involved in cell wall-plasma membrane contacts and in extracellular ATP (eATP) perception, was studied through biochemical, gene expression and reverse genetics approaches. In Arabidopsis thaliana, LecRK-I.9 expression is rapidly, highly and locally induced on inoculation with avirulent strains of Pseudomonas syringae pv. tomato (Pst). Two allelic lecrk-I.9 knock-out mutants showed decreased resistance to Pst. Conversely, over-expression of LecRK-I.9 led to increased resistance to Pst. The analysis of defence gene expression suggests an alteration of both the salicylic acid (SA) and jasmonic acid (JA) signalling pathways. In particular, LecRK-I.9 expression during plant-pathogen interaction was dependent on COI1 (CORONATINE INSENSITIVE 1) and JAR1 (JASMONATE RESISTANT 1) components, and JA-responsive transcription factors (TFs) showed altered levels of expression in plants over-expressing LecRK-I.9. A similar misregulation of these TFs was obtained by JA treatment. This study identified LecRK-I.9 as necessary for full resistance to Pst and demonstrated its involvement in the control of defence against pathogens through a regulation of JA signalling components. The role of LecRK-I.9 is discussed with regard to the potential molecular mechanisms linking JA signalling to cell wall damage and/or eATP perception.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Arabidopsis/microbiology , Cyclopentanes/metabolism , Disease Resistance , Oxylipins/metabolism , Plant Diseases/microbiology , Protein Kinases/metabolism , Pseudomonas syringae/physiology , Signal Transduction , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis Proteins/genetics , Biosynthetic Pathways/genetics , Cell Death/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant , Glucuronidase/metabolism , Phenotype , Plant Diseases/genetics , Plants, Genetically Modified , Protein Kinases/genetics , Pseudomonas syringae/pathogenicity , Virulence
8.
Methods Mol Biol ; 1511: 171-185, 2017.
Article in English | MEDLINE | ID: mdl-27730611

ABSTRACT

This chapter describes a method allowing the purification of the cell wall for studying both polysaccharides and proteins. The plant primary cell wall is mainly composed of polysaccharides (90-95 % in mass) and of proteins (5-10 %). At the end of growth, specialized cells may synthesize a lignified secondary wall composed of polysaccharides (about 65 %) and lignin (about 35 %). Due to its composition, the cell wall is the cellular compartment having the highest density and this property is used for its purification. It plays critical roles during plant development and in response to environmental constraints. It is largely used in the food and textile industries as well as for the production of bioenergy. All these characteristics and uses explain why its study as a true cell compartment is of high interest. The proposed method of purification can be used for large amount of material but can also be downscaled to 500 mg of fresh material. Tools for checking the quality of the cell wall preparation, such as protein analysis and microscopy observation, are also provided.


Subject(s)
Arabidopsis/chemistry , Brachypodium/chemistry , Cell Fractionation/methods , Cell Wall/chemistry , Plant Proteins/isolation & purification , Vacuoles/chemistry , Arabidopsis/growth & development , Brachypodium/growth & development , Cell Fractionation/instrumentation , Cell Wall/ultrastructure , Culture Media/chemistry , Electrophoresis, Polyacrylamide Gel/methods , Hypocotyl/chemistry , Hypocotyl/ultrastructure , Microscopy , Plant Proteins/chemistry , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Seeds/chemistry , Seeds/growth & development
9.
Biochim Biophys Acta ; 1864(8): 983-90, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26945515

ABSTRACT

Plant cell wall proteins (CWPs) and peptides are important players in cell walls contributing to their assembly and their remodeling during development and in response to environmental constraints. Since the rise of proteomics technologies at the beginning of the 2000's, the knowledge of CWPs has greatly increased leading to the discovery of new CWP families and to the description of the cell wall proteomes of different organs of many plants. Conversely, cell wall peptidomics data are still lacking. In addition to the identification of CWPs and peptides by mass spectrometry (MS) and bioinformatics, proteomics has allowed to describe their post-translational modifications (PTMs). At present, the best known PTMs consist in proteolytic cleavage, N-glycosylation, hydroxylation of P residues into hydroxyproline residues (O), O-glycosylation and glypiation. In this review, the methods allowing the capture of the modified proteins based on the specific properties of their PTMs as well as the MS technologies used for their characterization are briefly described. A focus is done on proteolytic cleavage leading to protein maturation or release of signaling peptides and on O-glycosylation. Some new technologies, like top-down proteomics and terminomics, are described. They aim at a finer description of proteoforms resulting from PTMs or degradation mechanisms. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.


Subject(s)
Cell Wall/metabolism , Peptides/metabolism , Plant Cells/metabolism , Plant Proteins/metabolism , Plants/metabolism , Protein Processing, Post-Translational/physiology , Proteomics/methods
10.
Proteomes ; 2(2): 224-242, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-28250379

ABSTRACT

Plant cell wall proteomics has been a very dynamic field of research for about fifteen years. A full range of strategies has been proposed to increase the number of identified proteins and to characterize their post-translational modifications. The protocols are still improving to enlarge the coverage of cell wall proteomes. Comparisons between these proteomes have been done based on various working strategies or different physiological stages. In this review, two points are highlighted. The first point is related to data analysis with an overview of the cell wall proteomes already described. A large body of data is now available with the description of cell wall proteomes of seventeen plant species. CWP contents exhibit particularities in relation to the major differences in cell wall composition and structure between these plants and between plant organs. The second point is related to methodology and concerns the present limitations of the coverage of cell wall proteomes. Because of the variety of cell wall structures and of the diversity of protein/polysaccharide and protein/protein interactions in cell walls, some CWPs can be missing either because they are washed out during the purification of cell walls or because they are covalently linked to cell wall components.

11.
Front Plant Sci ; 4: 111, 2013.
Article in English | MEDLINE | ID: mdl-23641247

ABSTRACT

Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions.

12.
New Phytol ; 192(1): 114-126, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21692803

ABSTRACT

• Here, we focused on the biochemical characterization of the Arabidopsis thaliana pectin methylesterase 3 gene (AtPME3; At3g14310) and its role in plant development. • A combination of biochemical, gene expression, Fourier transform-infrared (FT-IR) microspectroscopy and reverse genetics approaches were used. • We showed that AtPME3 is ubiquitously expressed in A. thaliana, particularly in vascular tissues. In cell wall-enriched fractions, only the mature part of the protein was identified, suggesting that it is processed before targeting the cell wall. In all the organs tested, PME activity was reduced in the atpme3-1 mutant compared with the wild type. This was related to the disappearance of an activity band corresponding to a pI of 9.6 revealed by a zymogram. Analysis of the cell wall composition showed that the degree of methylesterification (DM) of galacturonic acids was affected in the atpme3-1 mutant. A change in the number of adventitious roots was found in the mutant, which correlated with the expression of the gene in adventitious root primordia. • Our results enable the characterization of AtPME3 as a major basic PME isoform in A. thaliana and highlight its role in adventitious rooting.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Arabidopsis/growth & development , Carboxylic Ester Hydrolases/metabolism , Plant Roots/enzymology , Plant Roots/growth & development , Amino Acid Sequence , Arabidopsis Proteins/chemistry , Carboxylic Ester Hydrolases/chemistry , Cell Wall/enzymology , Enzyme Activation , Esterification , Isoenzymes/chemistry , Isoenzymes/metabolism , Molecular Sequence Data , Mutation/genetics , Pectins/metabolism , Phenotype , Plant Vascular Bundle/enzymology , Promoter Regions, Genetic/genetics , Protein Transport
13.
PLoS Pathog ; 7(3): e1001327, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21483488

ABSTRACT

In plants, an active defense against biotrophic pathogens is dependent on a functional continuum between the cell wall (CW) and the plasma membrane (PM). It is thus anticipated that proteins maintaining this continuum also function in defense. The legume-like lectin receptor kinase LecRK-I.9 is a putative mediator of CW-PM adhesions in Arabidopsis and is known to bind in vitro to the Phytophthora infestans RXLR-dEER effector IPI-O via a RGD cell attachment motif present in IPI-O. Here we show that LecRK-I.9 is associated with the plasma membrane, and that two T-DNA insertions lines deficient in LecRK-I.9 (lecrk-I.9) have a 'gain-of-susceptibility' phenotype specifically towards the oomycete Phytophthora brassicae. Accordingly, overexpression of LecRK-I.9 leads to enhanced resistance to P. brassicae. A similar 'gain-of-susceptibility' phenotype was observed in transgenic Arabidopsis lines expressing ipiO (35S-ipiO1). This phenocopy behavior was also observed with respect to other defense-related functions; lecrk-I.9 and 35S-ipiO1 were both disturbed in pathogen- and MAMP-triggered callose deposition. By site-directed mutagenesis, we demonstrated that the RGD cell attachment motif in IPI-O is not only essential for disrupting the CW-PM adhesions, but also for disease suppression. These results suggest that destabilizing the CW-PM continuum is one of the tactics used by Phytophthora to promote infection. As countermeasure the host may want to strengthen CW-PM adhesions and the novel Phytophthora resistance component LecRK-I.9 seems to function in this process.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis , Cell Membrane/metabolism , Cell Wall/metabolism , Fungal Proteins/metabolism , Phytophthora infestans/pathogenicity , Plant Diseases/immunology , Protein Serine-Threonine Kinases/metabolism , Amino Acid Motifs , Arabidopsis/cytology , Arabidopsis/genetics , Arabidopsis/immunology , Arabidopsis/metabolism , Fungal Proteins/chemistry , Gene Expression , Immunity, Innate , Mutagenesis, Site-Directed , Mutation , Phenotype , Phytophthora infestans/genetics , Phytophthora infestans/metabolism , Plants, Genetically Modified , Polymerase Chain Reaction
14.
Mol Plant ; 2(5): 977-89, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19825673

ABSTRACT

Proteomics allows the large-scale study of protein expression either in whole organisms or in purified organelles. In particular, mass spectrometry (MS) analysis of gel-separated proteins produces data not only for protein identification, but for protein structure, location, and processing as well. An in-depth analysis was performed on MS data from etiolated hypocotyl cell wall proteomics of Arabidopsis thaliana. These analyses show that highly homologous members of multigene families can be differentiated. Two lectins presenting 93% amino acid identity were identified using peptide mass fingerprinting. Although the identification of structural proteins such as extensins or hydroxyproline/proline-rich proteins (H/PRPs) is arduous, different types of MS spectra were exploited to identify and characterize an H/PRP. Maturation events in a couple of cell wall proteins (CWPs) were analyzed using site mapping. N-glycosylation of CWPs as well as the hydroxylation or oxidation of amino acids were also explored, adding information to improve our understanding of CWP structure/function relationships. A bioinformatic tool was developed to locate by means of MS the N-terminus of mature secreted proteins and N-glycosylation.


Subject(s)
Cell Wall/metabolism , Proteomics/methods , Amino Acid Sequence , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/isolation & purification , Arabidopsis Proteins/metabolism , Computational Biology , Glycopeptides/chemistry , Glycopeptides/isolation & purification , Glycopeptides/metabolism , Molecular Sequence Data , Protein Processing, Post-Translational , Sequence Homology, Amino Acid , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
15.
BMC Plant Biol ; 8: 94, 2008 Sep 16.
Article in English | MEDLINE | ID: mdl-18796151

ABSTRACT

BACKGROUND: Cell elongation in plants requires addition and re-arrangements of cell wall components. Even if some protein families have been shown to play roles in these events, a global picture of proteins present in cell walls of elongating cells is still missing. A proteomic study was performed on etiolated hypocotyls of Arabidopsis used as model of cells undergoing elongation followed by growth arrest within a short time. RESULTS: Two developmental stages (active growth and after growth arrest) were compared. A new strategy consisting of high performance cation exchange chromatography and mono-dimensional electrophoresis was established for separation of cell wall proteins. This work allowed identification of 137 predicted secreted proteins, among which 51 had not been identified previously. Apart from expected proteins known to be involved in cell wall extension such as xyloglucan endotransglucosylase-hydrolases, expansins, polygalacturonases, pectin methylesterases and peroxidases, new proteins were identified such as proteases, proteins related to lipid metabolism and proteins of unknown function. CONCLUSION: This work highlights the CWP dynamics that takes place between the two developmental stages. The presence of proteins known to be related to cell wall extension after growth arrest showed that these proteins may play other roles in cell walls. Finally, putative regulatory mechanisms of protein biological activity are discussed from this global view of cell wall proteins.


Subject(s)
Arabidopsis Proteins/isolation & purification , Arabidopsis/growth & development , Cell Wall/metabolism , Proteome , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Chromatography, Ion Exchange , Computational Biology , Electrophoresis, Polyacrylamide Gel , Genome, Plant , Hypocotyl/growth & development , Hypocotyl/metabolism , Proteomics
16.
Methods Mol Biol ; 425: 187-201, 2008.
Article in English | MEDLINE | ID: mdl-18369898

ABSTRACT

The quality of a proteomic analysis of a cell compartment strongly depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific drawbacks: (1) the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP) during the isolation procedure; (2) polysaccharide networks of cellulose, hemicelluloses, and pectins form potential traps for contaminants such as intracellular proteins; (3) the presence of proteins interacting in many different ways with the polysaccharide matrix require different procedures to elute them from the cell wall. Three categories of CWP are distinguished: labile proteins that have little or no interactions with cell wall components, weakly bound proteins extractable with salts, and strongly bound proteins. Two alternative protocols are decribed for cell wall proteomics: (1) nondestructive techniques allowing the extraction of labile or weakly bound CWP without damaging the plasma membrane; (2) destructive techniques to isolate cell walls from which weakly or strongly bound CWP can be extracted. These protocols give very low levels of contamination by intracellular proteins. Their application should lead to a realistic view of the cell wall proteome at least for labile and weakly bound CWP extractable by salts.


Subject(s)
Arabidopsis Proteins/isolation & purification , Arabidopsis/chemistry , Cell Wall/chemistry
17.
Proteomics ; 8(4): 893-908, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18210371

ABSTRACT

The plant extracellular matrix contains typical polysaccharides such as cellulose, hemicelluloses, and pectins that interact to form dense interwoven networks. Plant cell walls play crucial roles during development and constitute the first barrier of defense against invading pathogens. Cell wall proteomics has greatly contributed to the description of the protein content of a compartment specific to plants. Around 400 cell wall proteins (CWPs) of Arabidopsis, representing about one fourth of its estimated cell wall proteome, have been described. The main points to note are that: (i) the diversity of enzymes acting on polysaccharides suggests a great plasticity of cell walls; (ii) CWPs such as proteases, polysaccharide hydrolytic enzymes, and lipases may contribute to the generation of signals; (iii) proteins of unknown functions were identified, suggesting new roles for cell walls. Recently, the characterization of PTMs such as N- and O-glycosylations improved our knowledge of CWP structure. The presence of many glycoside hydrolases and proteases suggests a complex regulation of CWPs involving various types of post-translational events. The first 3-D structures to be resolved gave clues about the interactions between CWPs, or between CWPs and polysaccharides. Future work should include: extracting and identifying CWPs still recalcitrant to proteomics, describing the cell wall interactome, improving quantification, and unraveling the roles of each of the CWPs.


Subject(s)
Cell Wall/genetics , Plant Proteins/genetics , Plants/genetics , Plants/ultrastructure , Proteomics , Arabidopsis/genetics , Computational Biology , Electrophoresis, Gel, Two-Dimensional , Oxidoreductases/metabolism , Peptide Hydrolases/metabolism , Plant Proteins/isolation & purification , Plant Proteins/physiology , Protein Processing, Post-Translational , Tandem Mass Spectrometry
18.
Plant Methods ; 2: 10, 2006 May 27.
Article in English | MEDLINE | ID: mdl-16729891

ABSTRACT

BACKGROUND: The ultimate goal of proteomic analysis of a cell compartment should be the exhaustive identification of resident proteins; excluding proteins from other cell compartments. Reaching such a goal closely depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific difficulties: (i) the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP) during the isolation procedure, (ii) polysaccharide networks of cellulose, hemicelluloses and pectins form potential traps for contaminants such as intracellular proteins. Several reported procedures to isolate cell walls for proteomic analyses led to the isolation of a high proportion (more than 50%) of predicted intracellular proteins. Since isolated cell walls should hold secreted proteins, one can imagine alternative procedures to prepare cell walls containing a lower proportion of contaminant proteins. RESULTS: The rationales of several published procedures to isolate cell walls for proteomics were analyzed, with regard to the bioinformatic-predicted subcellular localization of the identified proteins. Critical steps were revealed: (i) homogenization in low ionic strength acid buffer to retain CWP, (ii) purification through increasing density cushions, (iii) extensive washes with a low ionic strength acid buffer to retain CWP while removing as many cytosolic proteins as possible, and (iv) absence of detergents. A new procedure was developed to prepare cell walls from etiolated hypocotyls of Arabidopsis thaliana. After salt extraction, a high proportion of proteins predicted to be secreted was released (73%), belonging to the same functional classes as proteins identified using previously described protocols. Finally, removal of intracellular proteins was obtained using detergents, but their amount represented less than 3% in mass of the total protein extract, based on protein quantification. CONCLUSION: The new cell wall preparation described in this paper gives the lowest proportion of proteins predicted to be intracellular when compared to available protocols. The application of its principles should lead to a more realistic view of the cell wall proteome, at least for the weakly bound CWP extractable by salts. In addition, it offers a clean cell wall preparation for subsequent extraction of strongly bound CWP.

19.
Trends Plant Sci ; 11(1): 33-9, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16356755

ABSTRACT

Cell wall proteins are essential constituents of plant cell walls; they are involved in modifications of cell wall components, wall structure, signaling and interactions with plasma membrane proteins at the cell surface. The application of proteomic approaches to the cell wall compartment raises important questions: are there technical problems specific to cell wall proteomics? What kinds of proteins can be found in Arabidopsis walls? Are some of them unexpected? What sort of post-translational modifications have been characterized in cell wall proteins to date? The purpose of this review is to discuss the experimental results obtained to date using proteomics, as well as some of the new questions challenging future research.


Subject(s)
Cell Wall/chemistry , Plant Cells , Plant Proteins/metabolism , Plants/metabolism , Proteomics , Gene Expression Profiling , Gene Expression Regulation, Plant
20.
Plant Physiol ; 140(1): 81-90, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16361528

ABSTRACT

Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsis thaliana), are disrupted by the RGD (arginine-glycine-aspartic acid) tripeptide sequence, a characteristic cell adhesion motif in mammals. In planta induced-O (IPI-O) is an RGD-containing protein from the plant pathogen Phytophthora infestans that can disrupt cell wall-plasma membrane adhesions through its RGD motif. To identify peptide sequences that specifically bind the RGD motif of the IPI-O protein and potentially play a role in receptor recognition, we screened a heptamer peptide library displayed in a filamentous phage and selected two peptides acting as inhibitors of the plasma membrane RGD-binding activity of Arabidopsis. Moreover, the two peptides also disrupted cell wall-plasma membrane adhesions. Sequence comparison of the RGD-binding peptides with the Arabidopsis proteome revealed 12 proteins containing amino acid sequences in their extracellular domains common with the two RGD-binding peptides. Eight belong to the receptor-like kinase family, four of which have a lectin-like extracellular domain. The lectin domain of one of these, At5g60300, recognized the RGD motif both in peptides and proteins. These results imply that lectin receptor kinases are involved in protein-protein interactions with RGD-containing proteins as potential ligands, and play a structural and signaling role at the plant cell surfaces.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Cell Membrane/enzymology , Cell Wall/metabolism , Protein Serine-Threonine Kinases/metabolism , Amino Acid Motifs , Amino Acid Sequence , Arabidopsis/cytology , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Cell Adhesion , Cell Membrane/metabolism , Fabaceae/genetics , Fungal Proteins/metabolism , Lectins/metabolism , Ligands , Models, Molecular , Molecular Sequence Data , Peptide Library , Protein Serine-Threonine Kinases/chemistry , Protein Structure, Tertiary , Sequence Analysis, Protein , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...