Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Sep Sci ; 47(2): e2300788, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38286727

ABSTRACT

Fufang Xiling Jiedu capsule (FXJC), a traditional Chinese medicine that evolved from "Yinqiao Powder", is widely used for the treatment of cold and influenza. However, due to a lack of in vivo metabolism research, the chemical components responsible for the therapeutic effects still remain unclear. Hence, this study aimed to describe the metabolic profiles of the FXJC in rat plasma, urine, and feces. A combined data mining strategy based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry was employed and 201 xenobiotics, including 117 prototype components and 84 metabolites were detected. Phenolic acids, flavonoids, triterpenes, and lignans were prominent ingredients absorbed in vivo, and the major metabolic pathways of the detected metabolites were glucuronidation, sulfation, methylation, and oxidation. This is the first systematic study on the metabolism of the FXJC in vivo, providing valuable information for future studies on the efficacy, toxicity, and mechanism of the FXJC.


Subject(s)
Drugs, Chinese Herbal , Tandem Mass Spectrometry , Rats , Animals , Tandem Mass Spectrometry/methods , Rats, Sprague-Dawley , Chromatography, High Pressure Liquid/methods , Administration, Oral , Drugs, Chinese Herbal/analysis , Metabolome
2.
Biochim Biophys Acta Mol Basis Dis ; 1868(12): 166539, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36100155

ABSTRACT

Muscone is the main active compound of Moschus. In this paper, the cardioprotective effect of Muscone on acute myocardial ischemia (AMI) rats and its potential mechanisms were investigated. AMI rat models were established to evaluate the protective effect and antioxidative function of Muscone on the hearts. Moreover, Western blot analysis was conducted to quantify the phosphorylated PI3K and AKT levels in PI3K/Akt pathway for further investigating the mechanism of Muscone. Results showed that Muscone could markedly lessen the infarct size and myocardial injury, improve cardiac function, inhibit cardiomyocyte apoptosis and down-regulate serum reactive oxygen species level as indicated by the decreased MDA, BNP and c-TnI activities and the increased SOD, GSH-px, CAT activities and the expression of Bax protein. In addition, it was revealed that Muscone notably promoted the phosphorylation of PI3K and AKT. These findings denote that Muscone exerts a protective effect in heart via inhibition of oxidative stress and apoptosis, offering new insights into the treatment of CHD and the clinical application of Muscone.


Subject(s)
Cycloparaffins , Myocardial Ischemia , Signal Transduction , Animals , Cycloparaffins/pharmacology , Myocardial Ischemia/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , bcl-2-Associated X Protein/metabolism , bcl-2-Associated X Protein/pharmacology
3.
Am J Chin Med ; 50(7): 1887-1904, 2022.
Article in English | MEDLINE | ID: mdl-36056468

ABSTRACT

Tetrahydropalmatine (THP) is an active component of Corydalis yanhusuo W. T. Wang. The current study investigates the possible cardioprotective effects of tetrahydropalmatine in acute myocardial ischemia (AMI) rats. The anterior descending coronary artery of SD rats was ligated to establish an AMI model. After two weeks of gavage of THP, cardiac function was determined by echocardiography. The organ index and the infarct size were assessed after the experiment, and the histopathological myocardial tissue changes were observed. In addition, the apoptosis index of myocardial cells was detected by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The levels of SOD, MDA, CAT, GSH-Px, BNP, and cTn-I were measured by enzyme-linked immunosorbent assay. To determine relevant proteins, the Western blot and molecular docking were applied. Compared with the model group, THP could enhance rat cardiac ejection function to improve cardiac function, drastically lessen the infarct size, reduce myocardial cell damage and inflammatory cell infiltration. THP might also prevent ischemic myocardial damage by inhibiting myocardial cell apoptosis and efficiently reducing oxidative stress. Specifically, THP could decrease MDA, BNP, c-TnI activities, as well as the expression of Bax and Caspase-3 protein, while increasing SOD, GSH-Px, CAT activities, and Bcl-2 level. Furthermore, THP could significantly promote the phosphorylation of PI3K and Akt proteins. The involved pathways and proteins have also been verified through molecular docking. According to these findings, THP may preserve the myocardium due to its anti-oxidant and anti-apoptotic properties.


Subject(s)
Myocardial Infarction , Myocardial Ischemia , Rats , Animals , Molecular Docking Simulation , Rats, Sprague-Dawley , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardium/pathology , Myocytes, Cardiac/pathology , Apoptosis , Myocardial Ischemia/pathology , Superoxide Dismutase/metabolism
4.
Pak J Pharm Sci ; 35(1): 123-128, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35221280

ABSTRACT

This study is aimed to investigate the effect of Xilingjiedu capsule (XLC), one of a preparation of traditional Chinese medicine, on influenza A (H1N1) virus as well as its preliminary mechanism. The median cell mortality (TC50) to A549 cells and half effective inhibition concentration (IC50) of influenza A (H1N1) virus of XLC were determined by MTT assay. Reed-Muench method was used to calculated the 50% tissue culture infective dose (TCID50) of H1N1 virus to A549 cells. In mechanism research, the mRNA expression levels of MyD88, TLR4, TLR7 and TRAF6 and the protein expression level of MyD88 were detected by using RT-PCR and Western blot, respectively. The results suggested that XLC showed good anti influenza A (H1N1) virus activity. The antiviral mechanism of XLC was related to the Toll-like signaling pathway. It could drown regulate the mRNA expression level of MyD88 and TLR4 and the protein level of MyD88. This research provides reference for the application of XLC in anti influenza virus.


Subject(s)
Antiviral Agents , Drugs, Chinese Herbal , Influenza A Virus, H1N1 Subtype , Animals , Chick Embryo , Humans , A549 Cells , Adenocarcinoma , Antiviral Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Lung Neoplasms , Oseltamivir/pharmacology
5.
Front Pharmacol ; 12: 698981, 2021.
Article in English | MEDLINE | ID: mdl-34335263

ABSTRACT

SheXiang XinTongNing (XTN), which is composed of six traditional Chinese herbs, is a commercially available Chinese patent medicine that has been widely used as the treatment of coronary heart disease (CHD). Its mechanisms against coronary heart disease, however, remain largely unknown. This study aimed to investigate the pharmacological mechanisms of XTN against CHD via network pharmacology and experimental evaluation. In this study, GO enrichment and KEGG pathway enrichment were firstly performed for acquiring the potentially active constituents of XTN, the candidate targets related to coronary heart disease, the drug-components-targets network as well as the protein-protein interaction network and further predicting the mechanisms of XTN against coronary heart disease. Subsequently, a series of in vitro experiments, specifically MTT assay, flow cytometry and Real-time quantitative polymerase chain reaction analysis, and a succession of in vivo experiments, including Tunel staining and immunohistochemical staining were conducted for further verification. Results showed that Bcl-2, IGF1, CASP3 were the key candidate targets which significantly associated with multiple pathways, namely PI3K-Akt signaling pathway and MAPK signaling pathway. It indicated that the potential mechanism of XTN against CHD may be predominantly associated with cell apoptosis. The in vitro experimental results showed that XTN treatment remarkably decreased the apoptotic rate and Bax/Bcl-2 ratio of H9c2 cells. Histological results confirmed that XTN not only effectively alleviated oxidative damage caused by myocardial ischemia but inhibited cell apoptosis. Given the above, through the combined utilization of virtual screening and experimental verification, the findings suggest that XTN makes a significant contribution in protecting the heart from oxidative stress via regulating apoptosis pathways, which lays the foundations and offers an innovative idea for future research.

6.
J Sep Sci ; 44(9): 1815-1823, 2021 May.
Article in English | MEDLINE | ID: mdl-33576573

ABSTRACT

Fufang Xiling Jiedu capsule is an effective Chinese medicine widely used for the treatment of cold and influenza. However, its chemical constituents had not been determined, which entailed a huge obstacle to further pharmacological studies, clinical-safe medication administration, and quality evaluation. To identify the chemical constituents in Fufang Xiling Jiedu capsule, an efficient and systematic approach using ultra-high-performance liquid chromatography coupled with a quadrupole time-of-flight mass spectrometry in conjunction with a data mining strategy was adopted in this study. As a result, 145 compounds were qualitatively identified, including 26 phenolic acids, 46 flavonoids, 39 triterpenes, and 34 other compounds, among which 6 were potentially new and 144 were being reported from Fufang Xiling Jiedu capsule for the first time. This research not only provides useful information for quality control of Fufang Xiling Jiedu capsule and its involved single herbs but also serve as basis data for further study of Fufang Xiling Jiedu capsule in vivo. Moreover, it provides a reference for the characterization of the chemical constituents of other Chinese medicine preparations.


Subject(s)
Data Mining , Drugs, Chinese Herbal/analysis , Capsules , Chromatography, High Pressure Liquid , Medicine, Chinese Traditional , Molecular Structure , Tandem Mass Spectrometry , Time Factors
7.
Am J Chin Med ; 48(1): 107-126, 2020.
Article in English | MEDLINE | ID: mdl-31931593

ABSTRACT

The Chinese patent medicine She-Xiang-Xin-Tong-Ning (SXXTN) is a clinical medication for coronary heart disease (CHD) and angina pectoris. This study aimed to investigate pharmacological effects of SXXTN and elucidate the role in angiogenesis on human umbilical vein endothelial cells (HUVECs) and acute myocardial ischemia (AMI) rats. We prepared SXXTN to treat the cells to reveal their effects on oxidative stress-damaged cell viability, as well as cell proliferation, migration, and tube formation processes. SXXTN was also used to treat coronary artery ligation-induced acute myocardial ischemia rats to confirm whether it had positive effect on myocardial issues by hematoxylin and eosin (HE), 2,3,5-triphenyltetrazolium chloride (TTC) staining and immunohistochemical staining. We measured the levels of peroxidative damage-related enzymes in cytoplasm and serum by biochemical kits and detected vascular endothelial growth factor (VEGF), angiotensin II (Ang II), thromboxane B2 (TXB2), and 6-keto-prostaglandin F1 alpha (6-keto-PGF1α) levels in cells and rats by enzyme-linked immunosorbent assay (ELISA) kits. The results showed that SXXTN protects HUVECs against oxidative stress damage and reversed the decrease of superoxide dismutase (SOD), glutathione (GSH) and increase of creatine kinase (CK), lactate dehydrogenase (LDH) caused by oxidative stress. SXXTN promoted angiogenesis through stimulating cell migration, tube formation, and activating VEGF/VEGFR2 and ERK1/2 pathways. Furthermore, SXXTN reduced infarct size and inhibited PGI2/TXA2 imbalance, preventing atherosclerosis plaque rupture leading to worsening coronary heart disease. Taken together, we report the first in vivo and in vitro evidence that SXXTN reduced oxidative stress-mediated damage and enhanced angiogenesis, which might be useful in treatment of myocardial infarction.


Subject(s)
Angiogenesis Inducing Agents/therapeutic use , Corydalis/chemistry , Medicine, Chinese Traditional , Myocardial Ischemia/drug therapy , Oxidative Stress/drug effects , Panax/chemistry , Animals , Deer , Disease Models, Animal , Human Umbilical Vein Endothelial Cells , Humans , Male , Rats , Rats, Sprague-Dawley
8.
Steroids ; 143: 1-5, 2019 03.
Article in English | MEDLINE | ID: mdl-30543815

ABSTRACT

Three pairs of ginsenoside epimers, including three new compounds (2, 3 and 5), were isolated from the flower buds of Panax ginseng. The structures of the isolated compounds were elucidated on the basis of considerable spectroscopic analyses and comparison with the reported data. All six compounds were evaluated for their cytotoxicties against three human cancer cell lines, HL-60, MGC80-3 and Hep-G2. Compounds 1, 3, and 6 with S configurations at C-24 or C-20 showed moderate inhibitory activities with IC50 values of 25.32, 18.76, and 38.64 µM in HL-60 cells, respectively. Our findings showed that different configurations of these isolated ginsenosides had a significant impact on the antitumor activity, and S epimers were higher than R.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Flowers/chemistry , Ginsenosides/chemistry , Ginsenosides/pharmacology , Panax/chemistry , Cell Line, Tumor , Humans , Hydrolysis , Stereoisomerism
9.
Zhongguo Zhong Yao Za Zhi ; 42(21): 4142-4149, 2017 Nov.
Article in Chinese | MEDLINE | ID: mdl-29271152

ABSTRACT

Isolation and purification of chemical constituents of liquid culture of symbiotic Chaetomium globosum ML-4 of oyster was performed through silica gel column chromatography, gel filtration over Sephadex LH-20, preparative TLC and HPLC. Five compounds were obtained and their structures were determined as chaetoglobosin V(1), chaetoglobosin Vb(2), tyrosol(3), 5-methyluracil(4)and uracil(5), respectively, based on HR-MS and NMR data and comparison with literatures. In vitro cytotoxicity of compounds against human hepatocellular carcinoma cell line SMMC-7721 were measured byMTT method, and results showed that compound 1 could obviously inhibit the proliferation of SMMC-7721 cells with an IC50 value of 60.5 mg•L⁻¹, while the IC50 value of positive control cisplatin was 19.96 mg•L⁻¹. Further studies discovered that compound 1 could lead to G2 phase arrest in SMMC-7721 cells and induce SMMC-7721 cells apoptosis. The ratio of Bcl-2/Bax in SMMC-7721 cells was decreased. The expression of protein Caspases-3,-8,-9 was improved and the expression and phosphorylation level of Akt were reduced. Aforementioned results revealed that in vitro antitumor activity of compound 1 against SMMC-7721 cells were related to G2 phase cell cycle arrest and induced-apoptosis. The induced-apoptosis was involved in both the mitochondrial pathway and the death receptor pathway and connected with activity decline of PI3K/Akt signaling pathway.


Subject(s)
Carcinoma, Hepatocellular/pathology , Chaetomium/chemistry , Liver Neoplasms/pathology , Ostreidae/microbiology , Animals , Apoptosis , Carcinoma, Hepatocellular/drug therapy , Cell Cycle Checkpoints , Cell Line, Tumor , Humans , Liver Neoplasms/drug therapy , Phosphatidylinositol 3-Kinases , Signal Transduction
10.
Molecules ; 21(2): 134, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26805808

ABSTRACT

The blood-brain barrier (BBB) permeability of twelve lignans and three phenolic malabaricones from the seeds of Myristica fragrans (nutmeg) were studied with the MDCK-pHaMDR cell monolayer model. The samples were measured by high-performance liquid chromatography and the apparent permeability coefficients (Papp) were calculated. Among the fifteen test compounds, benzonfuran-type, dibenzylbutane-type and arylnaphthalene-type lignans showed poor to moderate permeabilities with Papp values at 10(-8)-10(-6) cm/s; those of 8-O-4'-neolignan and tetrahydrofuran-lignan were at 10(-6)-10(-5) cm/s, meaning that their permeabilities are moderate to high; the permeabilities of malabaricones were poor as their Papp values were at 10(-8)-10(-7) cm/s. To 5-methoxy-dehydrodiisoeugenol (2), erythro-2-(4-allyl-2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)-propan-1-ol acetate (6), verrucosin (8), and nectandrin B (9), an efflux way was involved and the main transporter for 6, 8 and 9 was demonstrated to be P-glycoprotein. The time and concentration dependency experiments indicated the main transport mechanism for neolignans dehydrodiisoeugenol (1), myrislignan (7) and 8 was passive diffusion. This study summarized the relationship between the BBB permeability and structure parameters of the test compounds, which could be used to preliminarily predict the transport of a compound through BBB. The results provide a significant molecular basis for better understanding the potential central nervous system effects of nutmeg.


Subject(s)
Blood-Brain Barrier/drug effects , Lignans/pharmacokinetics , Myristica/chemistry , Resorcinols/pharmacokinetics , Animals , Cell Line , Dogs , Humans , Lignans/chemistry , Madin Darby Canine Kidney Cells , Models, Biological , Permeability , Resorcinols/chemistry , Seeds/chemistry
11.
Food Chem ; 173: 231-7, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25466017

ABSTRACT

Five new 8-O-4' type neolignans, named myrifralignan A-E (1-5), together with five known analogues (6-10), were isolated from the seeds of Myristica fragrans Houtt. Their chemical structures were determined using several spectroscopic methods. Compounds 3-10 exhibited potent inhibitory activity against the production of nitric oxide (NO) in the RAW264.7 cell line stimulated by lipopolysaccaride. Myrislignan (7) and machilin D (10) were the most potent inhibitors of NO production amongst these compounds. The IC50 values of myrislignan and machilin D were 21.2 and 18.5 µM. And, their inhibitory activity was more than L-N(6)-(1-iminoethyl)-lysine, a selective inhibitor of inducible nitric oxide synthase (IC50=27.1 µM). Furthermore, real-time PCR analysis revealed that these neolignans could significantly suppress the expression of inducible nitric oxide synthase mRNA. These results demonstrated that the 8-O-4' type neolignans are promising candidates as anti-inflammatory agents.


Subject(s)
Lignans/isolation & purification , Myristica/chemistry , Nitric Oxide/antagonists & inhibitors , Animals , Cells, Cultured , Humans , Lignans/chemistry , Lignans/pharmacology , Mice , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/genetics , Seeds/chemistry
12.
Food Chem Toxicol ; 62: 167-71, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23994084

ABSTRACT

Six dihydrobenzofuran type neolignans were isolated from the dried ripe seeds of Myristica fragrans Houtt. (family: Myristicaceae) and their chemical structures were identified as licarin B (1), 3'-methoxylicarin B (2), myrisfrageal A (3), isodihydrocainatidin (4), dehydrodiisoeugenol (5), and myrisfrageal B (6), respectively, on the basis of spectroscopic data analyses. Among them, compounds 3 and 6 are new compounds. Compounds 1-6 showed inhibition of nitric oxide production in lipopolysaccharide-activated murine monocyte-macrophage RAW264.7 with IC50 values of 53.6, 48.7, 76.0, 36.0, 33.6, and 45.0 µM, respectively. These values were compared to those of the positive controls, indomethacin and L-N(6)-(1-iminoethyl)-lysine, which have IC50 values of 65.3 and 27.1 µM, respectively. Further compounds 3, 5 and 6 suppressed LPS-induced iNOS mRNA expression in a does-dependent manner in RAW 264.7 cells assayed by real-time RT-PCR. Compounds 3, 5 and 6 may inhibit NO overproduction via inhibition of iNOS mRNA expression. The results provided valuable information for further investigation of compounds 1-6 as anti-inflammatory and chemopreventive agents.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Myristica/chemistry , Nitric Oxide/antagonists & inhibitors , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Benzofurans/isolation & purification , Cells, Cultured , Dioxoles/isolation & purification , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Eugenol/analogs & derivatives , Eugenol/isolation & purification , Inhibitory Concentration 50 , Lignans/isolation & purification , Lignans/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Mice , Molecular Structure , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type II/genetics , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...