Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
Small ; : e2401502, 2024 May 08.
Article En | MEDLINE | ID: mdl-38716798

All-solid-state fluoride ion batteries (ASSFIBs) show remarkable potential as energy storage devices due to their low cost, superior safety, and high energy density. However, the poor ionic conductivity of F- conductor, large volume expansion, and the lack of a suitable anode inhibit their development. In this work, PbSnF4 solid electrolytes in different phases (ß- and γ-PbSnF4) are successfully synthesized and characterized. The ASSFIBs composed of ß-PbSnF4 electrolytes, a BiF3 cathode, and micrometer/nanometer size (µ-/n-) Sn anodes, exhibit substantial capacities. Compared to the µ-Sn anode, the n-Sn anode with nanostructure exhibits superior battery performance in the BiF3/ß-PbSnF4/Sn battery. The optimized battery delivers a high initial discharge capacity of 181.3 mAh g-1 at 8 mA g-1 and can be reversibly cycled at 40 mA g-1 with a high discharge capacity of over 100.0 mAh g-1 after 120 cycles at room temperature. Additionally, it displays high discharge capacities over 90.0 mAh g-1 with excellent cyclability over 100 cycles under -20 °C. Detailed characterization has confirmed that reducing Sn particle size and boosting external pressure are crucial for achieving good defluorination/fluorination behaviors in the Sn anode. These findings pave the way to designing ASSFIBs with high capacities and superior cyclability under different operating temperatures.

2.
Adv Mater ; 36(21): e2312054, 2024 May.
Article En | MEDLINE | ID: mdl-38327173

2D perovskites have shown great potential toward stable and efficient photovoltaic devices. However, the crystal orientation and phase impurity issues of 2D perovskite films originating from the anisotropic crystal structure and specific growth mechanism have demoted their optoelectronic performances. Here, the surface crystallization modulation technique is introduced to fabricate the high-quality 2D perovskite films with both vertical crystal orientation and high phase purity by regulating the crystallization dynamics. The solvent atmosphere condition is instituted during film processing, which promotes the formation of an oriented 2D perovskite layer in stoichiometric composition at the vapor-liquid interface and templates the subsequent film growth. The solar cells based on the optimized 2D perovskite films exhibit a power conversion efficiency of 15.04%, the record for 2D perovskites (with the perovskite slab thickness n ≤ 3 and high phase purity). The solar cells based on the highly-oriented and phase-pure 2D perovskite films also demonstrate excellent thermal and humidity stabilities.

3.
Nano Lett ; 24(2): 741-747, 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38166145

The emergence of one-dimensional van der Waals heterostructures (1D vdWHs) opens up potential fields with unique properties, but precise synthesis remains a challenge. The utilization of mixed conductive types of carbon nanotubes as templates has imposed restrictions on the investigation of the electrical behavior and interlayer interaction of 1D vdWHs. In this study, we efficiently encapsulated silver iodide in high-purity semiconducting single-walled carbon nanotubes (sSWCNTs), forming 1D AgI@sSWCNT vdWHs. We characterized the semiconductor-metal transition and increased the carrier concentration of individual AgI@sSWCNTs via sensitive dielectric force microscopy and confirmed the results through electrical device tests. The electrical behavior transition was attributed to an interlayer charge transfer, as demonstrated by Kelvin probe force microscopy. Furthermore, we showed that this method of synthesizing 1D heterostructures can be extended to other metal halides. This work opens the door for the further exploration of the electrical properties of 1D vdWHs.

4.
Nat Mater ; 23(3): 331-338, 2024 Mar.
Article En | MEDLINE | ID: mdl-37537355

The properties of two-dimensional (2D) van der Waals materials can be tuned through nanostructuring or controlled layer stacking, where interlayer hybridization induces exotic electronic states and transport phenomena. Here we describe a viable approach and underlying mechanism for the assisted self-assembly of twisted layer graphene. The process, which can be implemented in standard chemical vapour deposition growth, is best described by analogy to origami and kirigami with paper. It involves the controlled induction of wrinkle formation in single-layer graphene with subsequent wrinkle folding, tearing and re-growth. Inherent to the process is the formation of intertwined graphene spirals and conversion of the chiral angle of 1D wrinkles into a 2D twist angle of a 3D superlattice. The approach can be extended to other foldable 2D materials and facilitates the production of miniaturized electronic components, including capacitors, resistors, inductors and superconductors.

5.
J Am Chem Soc ; 145(49): 26871-26882, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-37968832

Two-dimensional (2D) covalent organic frameworks (COFs) with hierarchical porosity have been increasingly recognized as promising materials in various fields. Besides, the 2D COFs with kagome (kgm) topology can exhibit unique optoelectronic features and have extensive applications. However, rational synthesis of the COFs with kgm topology remains challenging because of competition with a square-lattice topology. Herein, we report two isomeric dual-pore 2D COFs with kgm topology using a novel geometric strategy to reduce the symmetry of their building blocks, which are four-armed naphthalene-based and azulene-based isomeric monomers. Owing to the large dipole moment of azulene, as-prepared azulene-based COF (COF-Az) possesses a considerably narrow band gap of down to 1.37 eV, which is much narrower than the naphthalene-based 2D COF (COF-Nap: 2.28 eV) and is the lowest band gap among reported imine-linked dual-pore 2D COFs. Moreover, COF-Az was used as electrode material in a gas sensor and exhibits high selectivity for NO2, including a high response rate (58.7%) to NO2 (10 ppm), fast recovery (72 s), up to 10 weeks of stability, and resistance to 80% relative humidity, which are superior to those of reported COF-based NO2 gas sensors. The calculation and in situ experimental results indicate that the large dipole moment of azulene boosts the sensitivity of the imine linkages. The usage of isomeric building blocks not only enables the synthesis of 2D COFs with isometric kgm topology but also provides an azulene-based 2D platform for studying the structure-property correlations of COFs.

6.
Dalton Trans ; 52(42): 15590-15596, 2023 Oct 31.
Article En | MEDLINE | ID: mdl-37791741

Phase engineering is a central subject in materials research. The recent research interest in the phase transition behavior of atomically thin 2D materials reveals the important role of their surface chemistry. In this study, we investigated the phase transformation of ultrathin TiO2(B) nanosheets to anatase under different conditions. We found that the convenient transformation in water under ambient conditions is driven by the hydrolysis of surface 1,2-ethylenedioxy groups and departure of ethylene glycol. A transformation pathway through the formation of protonic titanate is proposed. The ultrathin structure and the metastable nature of the precursor facilitate the phase conversion to anatase. Our finding offers a new insight into the mechanism of TiO2(B) phase transition from the viewpoint of surface chemistry and may contribute to the potential application of ultrathin TiO2(B) nanosheets in aqueous environments.

7.
ACS Nano ; 17(20): 20112-20119, 2023 Oct 24.
Article En | MEDLINE | ID: mdl-37791779

One-dimensional (1D) magnetic material systems have attracted widespread interest from researchers because of their peculiar physical properties and potential applications in spintronics devices. However, the synthesis of 1D magnetic atomic chains has seldom been investigated. Here, we developed an iodine-assisted vacuum chemical vapor-phase transport (I-VCVT) method, utilizing single-walled carbon nanotubes (SWCNTs) with 1D cavities as templates, and high-quality and high-efficiency fabrication of 1D atomic chains of CrCl3 was achieved. Furthermore, the structure of CrCl3 atomic chains in the confined space of SWCNTs was analyzed in detail, and the charge transfer between the 1D atomic chains and SWCNTs was investigated through spectroscopic characterization. A comprehensive study of the dynamic magnetic properties revealed the existence of spin glass states and freezing of the 1D CrCl3 atomic chains at around 3 K, which has never been seen in bulk CrCl3. Our work established an effective strategy for the control synthesis of 1D magnetic atomic chains with promising potential applications in further magnetic-based spintronics devices.

8.
J Am Chem Soc ; 145(23): 12760-12770, 2023 Jun 14.
Article En | MEDLINE | ID: mdl-37154477

Tungsten and molybdenum carbides have shown great potential in catalysis and superconductivity. However, the synthesis of ultrathin W/Mo carbides with a controlled dimension and unique structure is still difficult. Here, inspired by the host-guest assembly strategy with single-walled carbon nanotubes (SWCNTs) as a transparent template, we reported the synthesis of ultrathin (0.8-2.0 nm) W2C and Mo2C nanowires confined in SWCNTs deriving from the encapsulated W/Mo polyoxometalate clusters. The atom-resolved electron microscope combined with spectroscopy and theoretical calculations revealed that the strong interaction between the highly carbophilic W/Mo and SWCNT resulted in the anisotropic growth of carbide nanowires along a specific crystal direction, accompanied by lattice strain and electron donation to the SWCNTs. The SWCNT template endowed carbides with resistance to H2O corrosion. Different from normal modification on the outer surface of SWCNTs, such M2C@SWCNTs (M = W, Mo) provided a delocalized and electron-enriched SWCNT surface to uniformly construct the negatively charged Pd catalyst, which was demonstrated to inhibit the formation of active PdHx hydride and thus achieve highly selective semihydrogenation of a series of alkynes. This work could provide a nondestructive way to design the electron-delocalized SWCNT surface and expand the methodology in synthesizing unusual 1D ultrathin carbophilic-metal nanowires (e.g., TaC, NbC, ß-W) with precise control of the anisotropy in SWCNT arrays.

9.
Nature ; 616(7957): 482-487, 2023 04.
Article En | MEDLINE | ID: mdl-37076728

Partitioning of americium from lanthanides (Ln) present in used nuclear fuel plays a key role in the sustainable development of nuclear energy1-3. This task is extremely challenging because thermodynamically stable Am(III) and Ln(III) ions have nearly identical ionic radii and coordination chemistry. Oxidization of Am(III) to Am(VI) produces AmO22+ ions distinct with Ln(III) ions, which has the potential to facilitate separations in principle. However, the rapid reduction of Am(VI) back to Am(III) by radiolysis products and organic reagents required for the traditional separation protocols including solvent and solid extractions hampers practical redox-based separations. Herein, we report a nanoscale polyoxometalate (POM) cluster with a vacancy site compatible with the selective coordination of hexavalent actinides (238U, 237Np, 242Pu and 243Am) over trivalent lanthanides in nitric acid media. To our knowledge, this cluster is the most stable Am(VI) species in aqueous media observed so far. Ultrafiltration-based separation of nanoscale Am(VI)-POM clusters from hydrated lanthanide ions by commercially available, fine-pored membranes enables the development of a once-through americium/lanthanide separation strategy that is highly efficient and rapid, does not involve any organic components and requires minimal energy input.

10.
ACS Appl Mater Interfaces ; 15(13): 16975-16983, 2023 Apr 05.
Article En | MEDLINE | ID: mdl-36943036

Developing crystalline porous materials with highly efficient CO2 selective adsorption capacity is one of the key challenges to carbon capture and storage (CCS). In current studies, much more attention has been paid to the crystalline and porous properties of crystalline porous materials for CCS, while the defects, which are unavoidable and ubiquitous, are relatively neglected. Herein, for the first time, we propose a monomer-symmetry regulation strategy for directional defect release to achieve in situ functionalization of COFs while exposing uniformly distributed defect-aldehyde groups as functionalization sites for selective CO2 capture. The regulated defective COFs possess high crystallinity, good structural stability, and a large number of organized and functionalized aldehyde sites, which exhibit one of the highest selective separation values of all COF sorbing materials in CO2/N2 selective adsorption (128.9 cm3/g at 273 K and 1 bar, selectivity: 45.8 from IAST). This work not only provides a new strategy for defect regulation and in situ functionalization of COFs but also provides a valuable approach in the design and preparation of new adsorbents for CO2 adsorption and CO2/N2 selective separation.

11.
J Am Chem Soc ; 145(11): 6184-6193, 2023 Mar 22.
Article En | MEDLINE | ID: mdl-36893194

Hexagonal boron nitride (h-BN) is regarded as one of the most efficient catalysts for oxidative dehydrogenation of propane (ODHP) with high olefin selectivity and productivity. However, the loss of the boron component under a high concentration of water vapor and high temperature seriously hinders its further development. How to make h-BN a stable ODHP catalyst is one of the biggest scientific challenges at present. Herein, we construct h-BN⊃xIn2O3 composite catalysts through the atomic layer deposition (ALD) process. After high-temperature treatment in ODHP reaction conditions, the In2O3 nanoparticles (NPs) are dispersed on the edge of h-BN and observed to be encapsulated by ultrathin boron oxide (BOx) overlayer. A novel strong metal oxide-support interaction (SMOSI) effect between In2O3 NPs and h-BN is observed for the first time. The material characterization reveals that the SMOSI not only improves the interlayer force between h-BN layers with a pinning model but also reduces the affinity of the B-N bond toward O• for inhibiting oxidative cutting of h-BN into fragments at a high temperature and water-rich environment. With the pinning effect of the SMOSI, the catalytic stability of h-BN⊃70In2O3 has been extended nearly five times than that of pristine h-BN, and the intrinsic olefin selectivity/productivity of h-BN is well maintained.

12.
Angew Chem Int Ed Engl ; 61(47): e202212532, 2022 Nov 21.
Article En | MEDLINE | ID: mdl-36169973

Metal organic frameworks (MOFs) are a distinct family of crystalline porous materials finding extensive applications. Their synthesis often requires elevated temperature and relatively long reaction time. We report here the first case of MOF synthesis activated by high-energy (1.5 MeV) electron beam radiation from a commercially available electron-accelerator. Using ZIF-8 as a representative for demonstration, this type of synthesis can be accomplished under ambient conditions within minutes, leading to energy consumption about two orders of magnitude lower than that of the solvothermal condition. Interestingly, by controlling the absorbed dose in the synthesis, the electron beam not only activates the formation reaction of ZIF-8, but also partially etches the material during the synthesis affording a hierarchical pore architecture and highly crystalline ZnO nanoparticles on the surface of ZIF-8. This gives rise to a new strategy to obtain MOF@metal oxide heterostructures, finding utilities in photocatalytic degradation of organic dyes.

13.
Small Methods ; 6(8): e2200110, 2022 Aug.
Article En | MEDLINE | ID: mdl-35733057

Controlling the edge morphology and terminations of graphene nanoribbons (GNR) allows tailoring their electronic properties and boosts their application potential. One way of making such structures is encapsulating them inside single-walled carbon nanotubes. Despite the versatility of Raman spectroscopy to resolve strong spectral signals of these systems, discerning the response of long nanoribbons from that of any residual precursor remaining outside after synthesis has been so far elusive. Here, the terrylene dye is used as precursor to make long and ultra-narrow armchair-edged GNR inside nanotubes. The alignment and characteristic length of terrylene encapsulated parallel to the tube's axis facilitates the ribbon formation via polymerization, with high stability up to 750 °C when the hybrid system is kept in high vacuum. A high temperature annealing is used to remove the terrylene external molecules and a subtraction model based on the determination of a scaling factor related to the G-band response of the system is developed. This not only represents a critical step forward toward the analysis of the nanoribbon-nanotube system, but it is a study that enables unraveling the Raman signatures of the individual CH-modes (the signature of edge passivation) for GNR for the first time with unprecedented detail.

14.
Nat Commun ; 13(1): 2662, 2022 May 13.
Article En | MEDLINE | ID: mdl-35562523

High-entropy alloys have received considerable attention in the field of catalysis due to their exceptional properties. However, few studies hitherto focus on the origin of their outstanding performance and the accurate identification of active centers. Herein, we report a conceptual and experimental approach to overcome the limitations of single-element catalysts by designing a FeCoNiXRu (X: Cu, Cr, and Mn) High-entropy alloys system with various active sites that have different adsorption capacities for multiple intermediates. The electronegativity differences between mixed elements in HEA induce significant charge redistribution and create highly active Co and Ru sites with optimized energy barriers for simultaneously stabilizing OH* and H* intermediates, which greatly enhances the efficiency of water dissociation in alkaline conditions. This work provides an in-depth understanding of the interactions between specific active sites and intermediates, which opens up a fascinating direction for breaking scaling relation issues for multistep reactions.

15.
ACS Nano ; 16(2): 3251-3263, 2022 Feb 22.
Article En | MEDLINE | ID: mdl-35089016

Strain engineering in bimetallic alloy structures is of great interest in electrochemical CO2 reduction reactions (CO2RR), in which it simultaneously improves electrocatalytic activity and product selectivity by optimizing the binding properties of intermediates. However, a reliable synthetic strategy and systematic understanding of the strain effects in the CO2RR are still lacking. Herein, we report a strain relaxation strategy used to determine lattice strains in bimetal MNi alloys (M = Pd, Ag, and Au) and realize an outstanding CO2-to-CO Faradaic efficiency of 96.6% and show the outstanding activity and durability toward a Zn-CO2 battery. Molecular dynamics (MD) simulations predict that the relaxation of strained PdNi alloys (s-PdNi) is correlated with increases in synthesis temperature, and the high temperature activation energy drives complete atomic mixing of multiple metal atoms to allow for regulation of lattice strains. Density functional theory (DFT) calculations reveal that strain relaxation effectively improves CO2RR activity and selectivity by optimizing the formation energies of *COOH and *CO intermediates on s-PdNi alloy surfaces, as also verified by in situ spectroscopic investigations. This approach provides a promising approach for catalyst design, enabling independent optimization of formation energies of reaction intermediates to improve catalytic activity and selectivity simultaneously.

16.
Angew Chem Int Ed Engl ; 60(18): 9897-9901, 2021 Apr 26.
Article En | MEDLINE | ID: mdl-33599368

Carbyne is a one-dimensional allotrope of carbon consisting of a linear chain of carbon atoms bonded to each other with exceptional strength. Its outstanding mechanical, optical, and electronic properties have been theoretically predicted, but its stability has only been achieved when grown encapsulated in the hollow core of carbon nanotubes. One of the advantages of this confinement is that its properties can be controlled by the chain's length and surrounding environment. We investigated an alternative way of gaining control of its properties is using isotope labelling as tuning mechanism. The optimized liquid precursor was first chosen among several options, which can greatly enhance the yield of the confined carbyne. Then isotopic labelled liquid precursor was encapsulated for further synthesis of isotopic labelled confined carbyne. This allowed us to obtain pioneering results on isotope engineered carbyne with around 11.9 % of 13 C-labelling using 13 C-methanol as precursor.

17.
Angew Chem Int Ed Engl ; 59(51): 22922-22927, 2020 Dec 14.
Article En | MEDLINE | ID: mdl-32918781

Porous graphene has shown promise as a new generation of selective membrane for sieving atoms, ions and molecules. However, the atomistic mechanisms of permeation through defects in the graphenic lattice are still unclear and remain unobserved in action, at the atomic level. Here, the direct observation of palladium atoms from a nanoparticle passing through a defect in a single-walled carbon nanotube one-by-one has been achieved with atomic resolution in real time, revealing key stages of the atomic permeation. Bonding between the moving atom and dangling bonds around the orifice, immediately before and after passing through the subnano-pore, plays an important role in the process. Curvature of the graphenic lattice crucially defines the direction of permeation from concave to convex side due to a difference in metal-carbon bonding at the curved surfaces as confirmed by density functional theory calculations, demonstrating the potential of porous carbon nanotubes for atom sieving.

18.
Nat Chem ; 12(10): 921-928, 2020 10.
Article En | MEDLINE | ID: mdl-32859955

Knowing how crystals nucleate at the atomic scale is crucial for understanding, and in turn controlling, the structure and properties of a wide variety of materials. However, because of the scale and highly dynamic nature of nuclei, the formation and early growth of nuclei are very difficult to observe. Here, we have employed single-walled carbon nanotubes as test tubes, and an 'atomic injector' coupled with aberration-corrected transmission electron microscopy, to enable in situ imaging of the initial steps of nucleation at the atomic scale. With three different metals we observed three main processes prior to heterogeneous nucleation: formation of crystal nuclei directly from an atomic seed (Fe), from a pre-existing amorphous nanocluster (Au) or by coalescence of two separate amorphous sub-nanometre clusters (Re). We demonstrate the roles of the amorphous precursors and the existence of an energy barrier before nuclei formation. In all three cases, crystal nucleus formation occurred through a two-step nucleation mechanism.

19.
Angew Chem Int Ed Engl ; 59(50): 22697-22705, 2020 Dec 07.
Article En | MEDLINE | ID: mdl-32851787

Constructing three-dimensional (3D) structural characteristics on two-dimensional (2D) covalent organic frameworks (COFs) is a good approach to effectively improve the permeability and mass transfer rate of the materials and realize the rapid adsorption for guest molecules, while avoiding the high cost and monomer scarcity in preparing 3D COFs. Herein, we report for the first time a series of colyliform crystalline 2D COFs with quasi-three-dimensional (Q-3D) topologies, consisting of unique "stereoscopic" triangular pores, large interlayer spacings and flexible constitutional units which makes the pores elastic and self-adaptable for the guest transmission. The as-prepared QTD-COFs have a faster adsorption rate (2.51 g h-1 ) for iodine than traditional 2D COFs, with an unprecedented maximum adsorption capacity of 6.29 g g-1 . The excellent adsorption performance, as well as the prominent irradiation stability allow the QTD-COFs to be applied for the rapid removal of radioactive iodine.

20.
Angew Chem Int Ed Engl ; 59(42): 18774-18785, 2020 Oct 12.
Article En | MEDLINE | ID: mdl-32544289

The formation of discrete macrocycles wrapped around single-walled carbon nanotubes (SWCNTs) has recently emerged as an appealing strategy to functionalize these carbon nanomaterials and modify their properties. Here, we demonstrate that the reversible disulfide exchange reaction, which proceeds under mild conditions, can install relatively large amounts of mechanically interlocked disulfide macrocycles on the one-dimensional nanotubes. Size-selective functionalization of a mixture of SWCNTs of different diameters were observed, presumably arising from error correction and the presence of relatively rigid, curved π-systems in the key building blocks. A combination of UV/Vis/NIR, Raman, photoluminescence excitation, and transient absorption spectroscopy indicated that the small (6,4)-SWCNTs were predominantly functionalized by the small macrocycles 12 , whereas the larger (6,5)-SWCNTs were an ideal match for the larger macrocycles 22 . This size selectivity, which was rationalized computationally, could prove useful for the purification of nanotube mixtures, since the disulfide macrocycles can be removed quantitatively under mild reductive conditions.

...