Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Exp Child Psychol ; 246: 105989, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889478

ABSTRACT

When solving mathematical problems, young children will perform better when they can use gestures that match mental representations. However, despite their increasing prevalence in educational settings, few studies have explored this effect in touchscreen-based interactions. Thus, we investigated the impact on young children's performance of dragging (where a continuous gesture is performed that is congruent with the change in number) and tapping (involving a discrete gesture that is incongruent) on a touchscreen device when engaged in a continuous number line estimation task. By examining differences in the set size and position of the number line estimation, we were also able to explore the boundary conditions for the superiority effect of congruent gestures. We used a 2 (Gesture Type: drag or tap) × 2 (Set Size: Set 0-10 or Set 0-20) × 2 (Position: left of midpoint or right of midpoint) mixed design. A total of 70 children aged 5 and 6 years (33 girls) were recruited and randomly assigned to either the Drag or Tap group. We found that the congruent gesture (drag) generally facilitated better performance with the touchscreen but with boundary conditions. When completing difficult estimations (right side in the large set size), the Drag group was more accurate, responded to the stimulus faster, and spent more time manipulating than the Tap group. These findings suggest that when children require explicit scaffolding, congruent touchscreen gestures help to release mental resources for strategic adjustments, decrease the difficulty of numerical estimation, and support constructing mental representations.

2.
Nucleic Acids Res ; 52(8): 4556-4574, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38554114

ABSTRACT

Transcriptional pausing aids gene regulation by cellular RNA polymerases (RNAPs). A surface-exposed domain inserted into the catalytic trigger loop (TL) of Escherichia coli RNAP, called SI3, modulates pausing and is essential for growth. Here we describe a viable E. coli strain lacking SI3 enabled by a suppressor TL substitution (ß'Ala941→Thr; ΔSI3*). ΔSI3* increased transcription rate in vitro relative to ΔSI3, possibly explaining its viability, but retained both positive and negative effects of ΔSI3 on pausing. ΔSI3* inhibited pauses stabilized by nascent RNA structures (pause hairpins; PHs) but enhanced other pauses. Using NET-seq, we found that ΔSI3*-enhanced pauses resemble the consensus elemental pause sequence whereas sequences at ΔSI3*-suppressed pauses, which exhibited greater association with PHs, were more divergent. ΔSI3*-suppressed pauses also were associated with apparent pausing one nucleotide upstream from the consensus sequence, often generating tandem pause sites. These '-2 pauses' were stimulated by pyrophosphate in vitro and by addition of apyrase to degrade residual NTPs during NET-seq sample processing. We propose that some pauses are readily reversible by pyrophosphorolysis or single-nucleotide cleavage. Our results document multiple ways that SI3 modulates pausing in vivo and may explain discrepancies in consensus pause sequences in some NET-seq studies.


Subject(s)
DNA-Directed RNA Polymerases , Escherichia coli Proteins , Escherichia coli , Transcription, Genetic , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Protein Domains
3.
Patterns (N Y) ; 4(8): 100814, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37602214

ABSTRACT

Analysis of single-cell RNA sequencing (scRNA-seq) data can reveal novel insights into the heterogeneity of complex biological systems. Many tools and workflows have been developed to perform different types of analyses. However, these tools are spread across different packages or programming environments, rely on different underlying data structures, and can only be utilized by people with knowledge of programming languages. In the Single-Cell Toolkit 2 (SCTK2), we have integrated a variety of popular tools and workflows to perform various aspects of scRNA-seq analysis. All tools and workflows can be run in the R console or using an intuitive graphical user interface built with R/Shiny. HTML reports generated with Rmarkdown can be used to document and recapitulate individual steps or entire analysis workflows. We show that the toolkit offers more features when compared with existing tools and allows for a seamless analysis of scRNA-seq data for non-computational users.

4.
Cell Biol Toxicol ; 39(6): 2787-2792, 2023 12.
Article in English | MEDLINE | ID: mdl-37115478

ABSTRACT

The development of diabetic nephropathy (DN) could be promoted by the occurrence of tubulointerstitial fibrosis (TIF), which has a close relationship with mitochondrial dysfunction of renal tubular epithelial cells (RTECs). As a key regulator of metabolic homeostasis, Yin Yang 1 (YY1) plays an important role not only in regulating the fibrosis process but also in maintaining the mitochondrial function of pancreatic ß-cells. However, it was not clear whether YY1 participated in maintaining mitochondrial function of RTECs in early DN-associated TIF. In this study, we dynamically detected mitochondrial functions and protein expression of YY1 in db/db mice and high glucose (HG)-cultured HK-2 cells. Our results showed that comparing with the occurrence of TIF, the emergence of mitochondrial dysfunction of RTECs was an earlier even, besides the up-regulated and nuclear translocated YY1. Correlation analysis showed YY1 expressions were negatively associated with PGC-1α in vitro and in vivo. Further mechanism research demonstrated the formation of mTOR-YY1 heterodimer induced by HG up-regulated YY1, the nuclear translocation of which inactivated PGC-1α by binding to the PGC-1α promoter. Overexpression of YY1 induced mitochondrial dysfunctions in normal glucose-cultured HK-2 cells and 8-weeks-old db/m mice. While, dysfunctional mitochondria induced by HG could be improved by knockdown of YY1. Finally, downregulation of YY1 could retard the progression of TIF by preventing mitochondrial functions, resulting in the improvement of epithelial-mesenchymal transition (EMT) in early DN. These findings suggested that YY1 was a novel regulator of mitochondrial function of RTECs and contributed to the occurrence of early DN-associated TIF.

5.
Nat Commun ; 14(1): 2001, 2023 04 10.
Article in English | MEDLINE | ID: mdl-37037805

ABSTRACT

DNA is a universal and programmable signal of living organisms. Here we develop cell-based DNA sensors by engineering the naturally competent bacterium Bacillus subtilis (B. subtilis) to detect specific DNA sequences in the environment. The DNA sensor strains can identify diverse bacterial species including major human pathogens with high specificity. Multiplexed detection of genomic DNA from different species in complex samples can be achieved by coupling the sensing mechanism to orthogonal fluorescent reporters. We also demonstrate that the DNA sensors can detect the presence of species in the complex samples without requiring DNA extraction. The modularity of the living cell-based DNA-sensing mechanism and simple detection procedure could enable programmable DNA sensing for a wide range of applications.


Subject(s)
Bacillus subtilis , Bacteria , Biosensing Techniques , Cell Engineering , DNA, Bacterial , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/pathogenicity , Bacillus subtilis/genetics , Bacillus subtilis/growth & development , Biosensing Techniques/methods , Humans , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Fluorescence , Microbial Viability , Synthetic Biology , Gene Regulatory Networks/genetics , Genes, Reporter/genetics , In Vitro Techniques , Escherichia coli/classification , Escherichia coli/genetics , Escherichia coli/isolation & purification , Bacterial Infections/microbiology
6.
Phytomedicine ; 113: 154703, 2023 May.
Article in English | MEDLINE | ID: mdl-36889164

ABSTRACT

BACKGROUND: Hepatic lipid accumulation was a major promoter for the further development of non-alcoholic fatty liver disease (NAFLD) in type 2 diabetes (T2DM). mTOR/YY1 signaling pathway regulated many metabolic processes in different organs, and played an important role in hepatic lipid metabolism. Thus, targeting mTOR/YY1 signaling pathway might be a novel therapeutic strategy of T2DM-associated NALFD. PURPOSE: To investigate the effects and the mechanism of quercetin against T2DM-associated NAFLD. STUDY DESIGN AND METHODS: The combine abilities of 24 flavonoid compounds with mTOR were detected by computer virtual screening (VS) and molecular modeling. mTOR/YY1 signaling pathway was examined in the liver of db/db mice, and high glucose (HG) and free fatty acid (FFA) co-cultured HepG2 cells. YY1 overexpression lentivirus vector and mTOR specific inhibitor rapamycin were used to further identify the indispensable role of mTOR/YY1 signaling pathway in quercetin's amelioration effect of hepatic lipid accumulation in vitro. Clinical studies, luciferase assay and chromatin immunoprecipitation (ChIP) assay were all carried out to investigate the potential mechanisms by which quercetin exerted its amelioration effect of hepatic lipid accumulation. RESULTS: Quercetin had the strongest ability to combine with mTOR and could competitively occupy its binding pocked. Along with the alleviated hepatic injury by quercetin, mTOR/YY1 signaling pathway was down-regulated in vivo and in vitro. However, the alleviation effect of quercetin against hepatic lipid accumulation was inhibited by YY1 overexpression in vitro. Mechanistically, the down-regulated nuclear YY1 induced by quercetin directly bound to CYP7A1 promoter and activated its transcription, resulting in the restoration of cholesterol homeostasis via the conversion of cholesterol-to-bile acids (BAs). CONCLUSION: The hepatoprotective effect of quercetin on T2DM-associated NAFLD was linked to the restoration of cholesterol homeostasis by the conversion of cholesterol-to-BAs via down-regulating mTOR/YY1 signaling pathway, leading to the increased CYP7A1 activity.


Subject(s)
Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Quercetin/pharmacology , Quercetin/therapeutic use , Bile Acids and Salts/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Liver/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Cholesterol/metabolism , Lipid Metabolism , Cholesterol 7-alpha-Hydroxylase/metabolism
7.
Cell Biol Toxicol ; 39(2): 391-413, 2023 04.
Article in English | MEDLINE | ID: mdl-35445903

ABSTRACT

The development of diabetic nephropathy (DN) could be promoted by the occurrence of tubulointerstitial fibrosis (TIF), which had a closely relationship with mitochondrial dysfunction of renal tubular epithelial cells (RTECs). As a key regulator of metabolic homeostasis, Yin Yang 1 (YY1) played an important role not only in regulating fibrosis process, but also in maintaining mitochondrial function of pancreatic ß cells. However, it was not clear whether YY1 participated in maintaining mitochondrial function of RTECs in early DN-associated TIF. In this study, we dynamically detected mitochondrial functions and protein expression of YY1 in db/db mice and high glucose (HG)-cultured HK-2 cells. Our results showed that comparing with the occurrence of TIF, the emergence of mitochondrial dysfunction of RTECs was an earlier even, besides the up-regulated and nuclear translocated YY1. Correlation analysis showed YY1 expressions were negatively associated with PGC-1α in vitro and in vivo. Further mechanism research demonstrated the formation of mTOR-YY1 heterodimer induced by HG upregulated YY1, the nuclear translocation of which inactivated PGC-1α by binding to the PGC-1α promoter. Overexpression of YY1 induced mitochondrial dysfunctions in normal glucose cultured HK-2 cells and 8-week-old db/m mice. While, dysfunctional mitochondria induced by HG could be improved by knockdown of YY1. Finally, downregulation of YY1 could retard the progression of TIF by preventing mitochondrial functions, resulting in the improvement of epithelial-mesenchymal transition (EMT) in early DN. These findings suggested that YY1 was a novel regulator of mitochondrial function of RTECs and contributed to the occurrence of early DN-associated TIF .


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Mice , Animals , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Gene Expression Regulation , Mitochondria/metabolism , Fibrosis , Glucose/pharmacology , Glucose/metabolism , Epithelial-Mesenchymal Transition , Diabetes Mellitus/metabolism , Diabetes Mellitus/pathology
8.
Chin J Nat Med ; 20(9): 656-668, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36162951

ABSTRACT

Diabetic nephropathy (DN) is one of the most common complications of diabetes mellitus, which is characterized in renal tubulointerstitial fibrosis (TIF). The current study was designed to investigate the protective effect of Jujuboside A (Ju A) on TIF in type 2 diabetes (T2DM) mice, and explore its underlying anti-fibrosis mechanism. A mouse T2DM model was established using high fat diet (HFD) feeding combined with intraperitoneal injection of streptozotocin (STZ). Then, diabetic mice were treated with Ju A (10, 20 and 40 mg·kg-1·d-1, i.g.) for 12 weeks. Results showed that administration of Ju A not only down-regulated fasting blood glucose (FBG) levels, but also improved hyperlipidemia and renal function in diabetic mice. Moreover, the reduced ECM accumulation was observed in the renal cortex of Ju A treated diabetic mice, while the TIF progression was also attenuated by Ju A through blocking the epithelial-to-mesenchymal transition (EMT) of renal tubular epithelial cells (RTECs). Further mechanism studies showed that Ju A treatment effectively down-regulated the protein expression and subsequent nuclear translocation of Yin Yang 1 (YY1) in the renal cortex of diabetic mice, and reduced the levels of transforming growth factor-ß1 (TGF-ß1) in the serum and renal cortex of Ju A treated mice. According to invitro studies, the up-regulated YY1/TGF-ß1 signaling pathway was restored by Ju A in high glucose (HG) cultured HK-2 cells. Taken together, these findings demonstrated that Ju A can ameliorate the TIF of DN through down-regulating the YY1/TGF-ß1 signaling pathway.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Animals , Blood Glucose , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Fibrosis , Mice , Saponins , Signal Transduction , Streptozocin , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
9.
Microb Cell ; 9(7): 136-138, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35855392

ABSTRACT

Clostridioides difficile (Cdiff) infection (CDI) continues to be the leading threat of nosocomial deaths worldwide and a major burden on health-care systems. Broad-spectrum antibiotics eradicate the normal gut microbiome, killing protective commensal bacteria and increasing CDI recurrence. In contrast, Fidaxomicin (Fdx) is a narrow-spectrum antibiotic that inhibits Cdiff growth without affecting crucial gut microbes. However, the basis of the narrow-spectrum activity of Fdx on its target, RNA polymerase (RNAP), in Cdiff has been enigmatic. Recently, Cao et al. (Nature, doi: 10.1038/s41586-022-04545-z) combined transgenic RNAP design and synthesis with cryo-electron microscopy (cryo-EM) to identify a key determinant of Fdx inhibition of Cdiff RNAP. This finding was further corroborated by biochemical, bioinformatics, and genetic analysis. This microreview describes implications of this work for lineage-specific antibiotic design and new directions toward understanding transcription and regulation in Cdiff and other bacterial pathogens.

10.
Nature ; 604(7906): 541-545, 2022 04.
Article in English | MEDLINE | ID: mdl-35388215

ABSTRACT

Fidaxomicin (Fdx) is widely used to treat Clostridioides difficile (Cdiff) infections, but the molecular basis of its narrow-spectrum activity in the human gut microbiome remains unknown. Cdiff infections are a leading cause of nosocomial deaths1. Fidaxomicin, which inhibits RNA polymerase, targets Cdiff with minimal effects on gut commensals, reducing recurrence of Cdiff infection2,3. Here we present the cryo-electron microscopy structure of Cdiff RNA polymerase in complex with fidaxomicin and identify a crucial fidaxomicin-binding determinant of Cdiff RNA polymerase that is absent in most gut microbiota such as Proteobacteria and Bacteroidetes. By combining structural, biochemical, genetic and bioinformatic analyses, we establish that a single residue in Cdiff RNA polymerase is a sensitizing element for fidaxomicin narrow-spectrum activity. Our results provide a blueprint for targeted drug design against an important human pathogen.


Subject(s)
Clostridioides difficile , Clostridium Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Clostridioides , Clostridium Infections/drug therapy , Clostridium Infections/microbiology , Cryoelectron Microscopy , DNA-Directed RNA Polymerases , Fidaxomicin/chemistry , Fidaxomicin/pharmacology , Fidaxomicin/therapeutic use , Humans
11.
Nat Commun ; 13(1): 1688, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35354805

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) can be used to gain insights into cellular heterogeneity within complex tissues. However, various technical artifacts can be present in scRNA-seq data and should be assessed before performing downstream analyses. While several tools have been developed to perform individual quality control (QC) tasks, they are scattered in different packages across several programming environments. Here, to streamline the process of generating and visualizing QC metrics for scRNA-seq data, we built the SCTK-QC pipeline within the singleCellTK R package. The SCTK-QC workflow can import data from several single-cell platforms and preprocessing tools and includes steps for empty droplet detection, generation of standard QC metrics, prediction of doublets, and estimation of ambient RNA. It can run on the command line, within the R console, on the cloud platform or with an interactive graphical user interface. Overall, the SCTK-QC pipeline streamlines and standardizes the process of performing QC for scRNA-seq data.


Subject(s)
Benchmarking , Software , Quality Control , Sequence Analysis, RNA , Exome Sequencing
12.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Article in English | MEDLINE | ID: mdl-33883267

ABSTRACT

Backtracking, the reverse motion of the transcriptase enzyme on the nucleic acid template, is a universal regulatory feature of transcription in cellular organisms but its role in viruses is not established. Here we present evidence that backtracking extends into the viral realm, where backtracking by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) may aid viral transcription and replication. Structures of SARS-CoV-2 RdRp bound to the essential nsp13 helicase and RNA suggested the helicase facilitates backtracking. We use cryo-electron microscopy, RNA-protein cross-linking, and unbiased molecular dynamics simulations to characterize SARS-CoV-2 RdRp backtracking. The results establish that the single-stranded 3' segment of the product RNA generated by backtracking extrudes through the RdRp nucleoside triphosphate (NTP) entry tunnel, that a mismatched nucleotide at the product RNA 3' end frays and enters the NTP entry tunnel to initiate backtracking, and that nsp13 stimulates RdRp backtracking. Backtracking may aid proofreading, a crucial process for SARS-CoV-2 resistance against antivirals.


Subject(s)
COVID-19/virology , SARS-CoV-2/physiology , Virus Replication/genetics , Adenosine Monophosphate/pharmacology , Antiviral Agents/pharmacology , COVID-19/genetics , COVID-19/metabolism , Coronavirus RNA-Dependent RNA Polymerase/metabolism , Cryoelectron Microscopy/methods , DNA Helicases/metabolism , Genome, Viral , Humans , Molecular Dynamics Simulation , RNA Helicases/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/physiology , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Viral Nonstructural Proteins/genetics
13.
bioRxiv ; 2021 Mar 14.
Article in English | MEDLINE | ID: mdl-33758867

ABSTRACT

Backtracking, the reverse motion of the transcriptase enzyme on the nucleic acid template, is a universal regulatory feature of transcription in cellular organisms but its role in viruses is not established. Here we present evidence that backtracking extends into the viral realm, where backtracking by the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) may aid viral transcription and replication. Structures of SARS-CoV-2 RdRp bound to the essential nsp13 helicase and RNA suggested the helicase facilitates backtracking. We use cryo-electron microscopy, RNA-protein crosslinking, and unbiased molecular dynamics simulations to characterize SARS-CoV-2 RdRp backtracking. The results establish that the single-stranded 3'-segment of the product-RNA generated by backtracking extrudes through the RdRp NTP-entry tunnel, that a mismatched nucleotide at the product-RNA 3'-end frays and enters the NTP-entry tunnel to initiate backtracking, and that nsp13 stimulates RdRp backtracking. Backtracking may aid proofreading, a crucial process for SARS-CoV-2 resistance against antivirals.

14.
Mol Cell ; 81(1): 8-9, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33417856

ABSTRACT

Travis et al. (2020) reveal how Francisella tularensis uses stress-induced ppGpp to activate its virulent pathogenesis program by tethering an αCTD-DNA organizer (PigR) to a σ-organizing heterodimer (MglA-SspA), highlighting the remarkable diversity of transcriptional mechanisms in under-studied bacteria.


Subject(s)
Francisella tularensis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Francisella tularensis/genetics , Francisella tularensis/metabolism , Gene Expression Regulation, Bacterial , Guanosine Pentaphosphate , Sigma Factor/genetics , Virulence
15.
mBio ; 10(3)2019 05 07.
Article in English | MEDLINE | ID: mdl-31064829

ABSTRACT

Acyl carrier proteins (ACPs) play essential roles in the synthesis of fatty acids and transfer of long fatty acyl chains into complex lipids. The Enterococcus faecalis genome contains two annotated acp genes, called acpA and acpB AcpA is encoded within the fatty acid synthesis (fab) operon and appears essential. In contrast, AcpB is an atypical ACP, having only 30% residue identity with AcpA, and is not essential. Deletion of acpB has no effect on E. faecalis growth or de novo fatty acid synthesis in media lacking fatty acids. However, unlike the wild-type strain, where growth with oleic acid resulted in almost complete blockage of de novo fatty acid synthesis, the ΔacpB strain largely continued de novo fatty acid synthesis under these conditions. Blockage in the wild-type strain is due to repression of fab operon transcription, leading to levels of fatty acid synthetic proteins (including AcpA) that are insufficient to support de novo synthesis. Transcription of the fab operon is regulated by FabT, a repressor protein that binds DNA only when it is bound to an acyl-ACP ligand. Since AcpA is encoded in the fab operon, its synthesis is blocked when the operon is repressed and acpA thus cannot provide a stable supply of ACP for synthesis of the acyl-ACP ligand required for DNA binding by FabT. In contrast to AcpA, acpB transcription is unaffected by growth with exogenous fatty acids and thus provides a stable supply of ACP for conversion to the acyl-ACP ligand required for repression by FabT. Indeed, ΔacpB and ΔfabT strains have essentially the same de novo fatty acid synthesis phenotype in oleic acid-grown cultures, which argues that neither strain can form the FabT-acyl-ACP repression complex. Finally, acylated derivatives of both AcpB and AcpA were substrates for the E. faecalis enoyl-ACP reductases and for E. faecalis PlsX (acyl-ACP; phosphate acyltransferase).IMPORTANCE AcpB homologs are encoded by many, but not all, lactic acid bacteria (Lactobacillales), including many members of the human microbiome. The mechanisms regulating fatty acid synthesis by exogenous fatty acids play a key role in resistance of these bacteria to those antimicrobials targeted at fatty acid synthesis enzymes. Defective regulation can increase resistance to such inhibitors and also reduce pathogenesis.


Subject(s)
Acyl Carrier Protein/metabolism , Bacterial Proteins/metabolism , Enterococcus faecalis/metabolism , Fatty Acids/metabolism , Gene Expression Regulation, Bacterial , Acyl Carrier Protein/genetics , Bacterial Proteins/genetics , Biosynthetic Pathways , Enterococcus faecalis/genetics , Lipid Metabolism , Operon
16.
Biochemistry ; 58(2): 94-107, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30457843

ABSTRACT

Microbiomes impact nearly every environment on Earth by modulating the molecular composition of the environment. Temporally changing environmental stimuli and spatial organization are major variables shaping the structure and function of microbiomes. The web of interactions among members of these communities and between the organisms and the environment dictates microbiome functions. Microbial interactions are major drivers of microbiomes and are modulated by spatiotemporal parameters. A mechanistic and quantitative understanding of ecological, molecular, and environmental forces shaping microbiomes could inform strategies to control microbiome dynamics and functions. Major challenges for harnessing the potential of microbiomes for diverse applications include the development of predictive modeling frameworks and tools for precise manipulation of microbiome behaviors.


Subject(s)
Computational Biology/methods , Microbiota/physiology , Models, Biological , Synthetic Biology/methods , Biological Evolution , Game Theory , Genome, Microbial , Spatio-Temporal Analysis
17.
Elife ; 72018 07 13.
Article in English | MEDLINE | ID: mdl-30004385

ABSTRACT

Many Bacteria and Archaea employ the heterodisulfide reductase (Hdr)-like sulfur oxidation pathway. The relevant genes are inevitably associated with genes encoding lipoate-binding proteins (LbpA). Here, deletion of the gene identified LbpA as an essential component of the Hdr-like sulfur-oxidizing system in the Alphaproteobacterium Hyphomicrobium denitrificans. Thus, a biological function was established for the universally conserved cofactor lipoate that is markedly different from its canonical roles in central metabolism. LbpAs likely function as sulfur-binding entities presenting substrate to different catalytic sites of the Hdr-like complex, similar to the substrate-channeling function of lipoate in carbon-metabolizing multienzyme complexes, for example pyruvate dehydrogenase. LbpAs serve a specific function in sulfur oxidation, cannot functionally replace the related GcvH protein in Bacillus subtilis and are not modified by the canonical E. coli and B. subtilis lipoyl attachment machineries. Instead, LplA-like lipoate-protein ligases encoded in or in immediate vicinity of hdr-lpbA gene clusters act specifically on these proteins.


Subject(s)
Hyphomicrobium/enzymology , Hyphomicrobium/metabolism , Ligases/metabolism , Sulfur/metabolism , Thioctic Acid/metabolism , Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Hyphomicrobium/genetics , Oxidation-Reduction , Oxidoreductases/metabolism
18.
Proc Natl Acad Sci U S A ; 115(30): E7063-E7072, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29987032

ABSTRACT

The lack of attachment of lipoic acid to its cognate enzyme proteins results in devastating human metabolic disorders. These mitochondrial disorders are evident soon after birth and generally result in early death. The mutations causing specific defects in lipoyl assembly map in three genes, LIAS, LIPT1, and LIPT2 Although physiological roles have been proposed for the encoded proteins, only the LIPT1 protein had been studied at the enzyme level. LIPT1 was reported to catalyze only the second partial reaction of the classical lipoate ligase mechanism. We report that the physiologically relevant LIPT1 enzyme activity is transfer of lipoyl moieties from the H protein of the glycine cleavage system to the E2 subunits of the 2-oxoacid dehydrogenases required for respiration (e.g., pyruvate dehydrogenase) and amino acid degradation. We also report that LIPT2 encodes an octanoyl transferase that initiates lipoyl group assembly. The human pathway is now biochemically defined.


Subject(s)
Acyltransferases/metabolism , Thioctic Acid/metabolism , Acyltransferases/genetics , Biocatalysis , Humans , Ketone Oxidoreductases/metabolism , Thioctic Acid/genetics
19.
mBio ; 9(3)2018 05 08.
Article in English | MEDLINE | ID: mdl-29739899

ABSTRACT

The precursors of the diffusible signal factor (DSF) family signals of Xanthomonas campestris pv. campestris are 3-hydroxyacyl-acyl carrier protein (3-hydroxyacyl-ACP) thioesters having acyl chains of 12 to 13 carbon atoms produced by the fatty acid biosynthetic pathway. We report a novel 3-oxoacyl-ACP reductase encoded by the X. campestris pv. campestris XCC0416 gene (fabG2), which is unable to participate in the initial steps of fatty acyl synthesis. This was shown by the failure of FabG2 expression to allow growth at the nonpermissive temperature of an Escherichia colifabG temperature-sensitive strain. However, when transformed into the E. coli strain together with a plasmid bearing the Vibrio harveyi acyl-ACP synthetase gene (aasS), growth proceeded, but only when the medium contained octanoic acid. In vitro assays showed that FabG2 catalyzes the reduction of long-chain (≥C8) 3-oxoacyl-ACPs to 3-hydroxyacyl-ACPs but is only weakly active with shorter-chain (C4, C6) substrates. FabG1, the housekeeping 3-oxoacyl-ACP reductase encoded within the fatty acid synthesis gene cluster, could be deleted in a strain that overexpressed fabG2 but only in octanoic acid-supplemented media. Growth of the X. campestris pv. campestris ΔfabG1 strain overexpressing fabG2 required fabH for growth with octanoic acid, indicating that octanoyl coenzyme A is elongated by X. campestris pv. campestrisfabH Deletion of fabG2 reduced DSF family signal production, whereas overproduction of either FabG1 or FabG2 in the ΔfabG2 strain restored DSF family signal levels.IMPORTANCE Quorum sensing mediated by DSF signaling molecules regulates pathogenesis in several different phytopathogenic bacteria, including Xanthomonas campestris pv. campestris DSF signaling also plays a key role in infection by the human pathogen Burkholderia cepacia The acyl chains of the DSF molecules are diverted and remodeled from a key intermediate of the fatty acid synthesis pathway. We report a Xanthomonas campestris pv. campestris fatty acid synthesis enzyme, FabG2, of novel specificity that seems tailored to provide DSF signaling molecule precursors.


Subject(s)
Acyl Carrier Protein/metabolism , Bacterial Proteins/metabolism , Oxidoreductases/metabolism , Xanthomonas campestris/enzymology , Acyl Carrier Protein/chemistry , Acyl Carrier Protein/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Fatty Acids/chemistry , Fatty Acids/metabolism , Gene Expression Regulation, Bacterial , Molecular Sequence Data , Oxidoreductases/chemistry , Oxidoreductases/genetics , Sequence Alignment , Signal Transduction , Xanthomonas campestris/genetics , Xanthomonas campestris/growth & development
20.
Proc Natl Acad Sci U S A ; 115(4): 647-655, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29339506

ABSTRACT

Lipoic acid is synthesized by a remarkably atypical pathway in which the cofactor is assembled on its cognate proteins. An octanoyl moiety diverted from fatty acid synthesis is covalently attached to the acceptor protein, and sulfur insertion at carbons 6 and 8 of the octanoyl moiety form the lipoyl cofactor. Covalent attachment of this cofactor is required for function of several central metabolism enzymes, including the glycine cleavage H protein (GcvH). In Bacillus subtilis, GcvH is the sole substrate for lipoate assembly. Hence lipoic acid-requiring 2-oxoacid dehydrogenase (OADH) proteins acquire the cofactor only by transfer from lipoylated GcvH. Lipoyl transfer has been argued to be the primordial pathway of OADH lipoylation. The Escherichia coli pathway where lipoate is directly assembled on both its GcvH and OADH proteins, is proposed to have arisen later. Because roughly 3 billion years separate the divergence of these bacteria, it is surprising that E. coli GcvH functionally substitutes for the B. subtilis protein in lipoyl transfer. Known and putative GcvHs from other bacteria and eukaryotes also substitute for B. subtilis GcvH in OADH modification. Because glycine cleavage is the primary GcvH role in ancestral bacteria that lack OADH enzymes, lipoyl transfer is a "moonlighting" function: that is, development of a new function while retaining the original function. This moonlighting has been conserved in the absence of selection by some, but not all, GcvH proteins. Moreover, Aquifex aeolicus encodes five putative GcvHs, two of which have the moonlighting function, whereas others function only in glycine cleavage.


Subject(s)
Bacterial Proteins/metabolism , Thioctic Acid/biosynthesis , Acyltransferases/metabolism , Amino Acid Oxidoreductases/metabolism , Amino Acid Sequence , Bacillus subtilis/metabolism , Bacterial Proteins/genetics , Biological Evolution , Carrier Proteins/metabolism , Escherichia coli/metabolism , Evolution, Molecular , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/metabolism , Lipoylation , Multienzyme Complexes/metabolism , Peptide Synthases/metabolism , Protein Processing, Post-Translational , Thioctic Acid/genetics , Transferases/genetics , Transferases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...