Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters











Publication year range
1.
Nanomicro Lett ; 16(1): 266, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133318

ABSTRACT

Fluorine owing to its inherently high electronegativity exhibits charge delocalization and ion dissociation capabilities; as a result, there has been an influx of research studies focused on the utilization of fluorides to optimize solid electrolyte interfaces and provide dynamic protection of electrodes to regulate the reaction and function performance of batteries. Nonetheless, the shuttle effect and the sluggish redox reaction kinetics emphasize the potential bottlenecks of lithium-sulfur batteries. Whether fluorine modulation regulate the reaction process of Li-S chemistry? Here, the TiOF/Ti3C2 MXene nanoribbons with a tailored F distribution were constructed via an NH4F fluorinated method. Relying on in situ characterizations and electrochemical analysis, the F activates the catalysis function of Ti metal atoms in the consecutive redox reaction. The positive charge of Ti metal sites is increased due to the formation of O-Ti-F bonds based on the Lewis acid-base mechanism, which contributes to the adsorption of polysulfides, provides more nucleation sites and promotes the cleavage of S-S bonds. This facilitates the deposition of Li2S at lower overpotentials. Additionally, fluorine has the capacity to capture electrons originating from Li2S dissolution due to charge compensation mechanisms. The fluorine modulation strategy holds the promise of guiding the construction of fluorine-based catalysts and facilitating the seamless integration of multiple consecutive heterogeneous catalytic processes.

2.
Water Res ; 261: 121985, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38968734

ABSTRACT

This study introduces a novel approach to transport modelling by integrating experimentally derived causal priors into neural networks. We illustrate this paradigm using a case study of metformin, a ubiquitous pharmaceutical emerging pollutant, and its transport behaviour in sandy media. Specifically, data from metformin's sandy column transport experiment was used to estimate unobservable parameters through a physics-based model Hydrus-1D, followed by a data augmentation to produce a more comprehensive dataset. A causal graph incorporating key variables was constructed, aiding in identifying impactful variables and estimating their causal dynamics or "causal prior." The causal priors extracted from the augmented dataset included underexplored system parameters such as the type-1 sorption fraction F, first-order reaction rate coefficient α, and transport system scale. Their moderate impact on the transport process has been quantitatively evaluated (normalized causal effect 0.0423, -0.1447 and -0.0351, respectively) with adequate confounders considered for the first time. The prior was later embedded into multilayer neural networks via two methods: causal weight initialization and causal prior regularization. Based on the results from AutoML hyperparameter tuning experiments, using two embedding methods simultaneously emerged as a more advantageous practice since our proposed causal weight initialization technique can enhance model stability, particularly when used in conjunction with causal prior regularization. amongst those experiments utilizing both techniques, the R-squared values peaked at 0.881. This study demonstrates a balanced approach between expert knowledge and data-driven methods, providing enhanced interpretability in black-box models such as neural networks for environmental modelling.


Subject(s)
Metformin , Neural Networks, Computer , Porosity , Water Pollutants, Chemical/chemistry
3.
Chem Commun (Camb) ; 60(64): 8339-8349, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39016016

ABSTRACT

MXenes, due to their unique geometric structure, rich elemental composition, and intrinsic physicochemical properties, have multi-functional applications. In the field of electrochemical energy storage, MXenes can be used as active components, conductive agents, supports, and catalysts in ion-intercalated batteries, metal-sulfur batteries, and supercapacitors. The electrochemical performance of MXene materials is closely related to their distinctive physical and chemical properties, which depend on their geometry, surface functional groups, and elemental composition. How to regulate MXene materials to optimize electrochemical functions is a key scientific challenge. Herein, we correlated the function of MXene materials with their interlayer structure, surface functional groups, and specific catalytic sites, analyzed the electrochemical function of MXene materials, and showed how to design the electrochemical function of MXene materials based on ion/electron transport. Additionally, this feature article provides an outlook on the opportunities and challenges for MXenes, offering theoretical and technical guidance on using MXene materials in energy storage systems.

4.
Environ Sci Technol ; 58(32): 14496-14505, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39047231

ABSTRACT

Although massive studies have investigated the spatiotemporally occurring marine plastisphere, a new microbial ecosystem colonizing the surfaces of plastics, the resulting biofragmentation process and impacts of plastics on biogeochemical cycles remain largely unknown. Here, we leverage synchrotron-based Fourier transform infrared spectromicroscopy (FTIR mapping) and metagenomic sequencing to explore independent marine microcosms amended with petroleum-based polyethylene (PE) and biobased polyhydroxybutyrate (PHB) plastic films. FTIR mapping results demonstrate unequal fragmentation scenarios by which the PE plastic rarely releases oxidized fragments while PHB disintegrates quickly, gradually forming fragments composed of extracellular polymeric substances resembling plastic films. Metagenomic analysis shows the critical role of hydrocarbonoclastic lineages in the biodegradation of the two plastics by the fatty acid degradation pathway, where the PE plastics host different microbial trajectories between the plastisphere (dominated by Alcanivorax) and surrounding seawater. In contrast, the PHB addition demonstrates decreased microbial richness and diversity, consistent community composition (dominated by Phaeobacter and Marinobacter), and apparently stimulated sulfur cycle and denitrification pathways in both the plastisphere and surrounding seawater. Our study gives scientific evidence on the marine biotic processes distinguishing petroleum- and biobased plastics, highlighting marine PHB input exerting straightforward impacts on the water phase and deserving critical management practices.


Subject(s)
Plastics , Polyethylene , Biodegradation, Environmental , Seawater/microbiology , Seawater/chemistry , Hydroxybutyrates/metabolism , Polyesters/chemistry
5.
Appl Opt ; 63(16): 4293-4302, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38856606

ABSTRACT

It is a challenge for conventional monocular-camera single-light source eye-tracking methods to achieve high-speed eye tracking. In this work, a dual-ring infrared lighting source was designed to achieve bright and dark pupils in high speed. The eye-tracking method used a dual-ring infrared lighting source and synchronized triggers for the even and odd camera frames to capture bright and dark pupils. A pupillary corneal reflex was calculated by the center coordinates of the Purkinje spot and the pupil. A map function was established to map the relationship between the pupillary corneal reflex and gaze spots. The gaze coordinate was calculated based on the mapping function. The average detection time of each gaze spot was 3.76 ms.


Subject(s)
Eye-Tracking Technology , Infrared Rays , Lighting , Humans , Lighting/instrumentation , Pupil/physiology , Equipment Design , Eye Movements/physiology , Reflex, Pupillary/physiology
6.
Sci Total Environ ; 917: 170527, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38286285

ABSTRACT

The global ocean has been receiving massive amounts of plastic wastes. Marine biodegradation, influenced by global climate, naturally breaks down these wastes. In this study, we systematically compared the biodegradation performance of petroleum- and bio-based plastic films, i.e., low-density polyethylene (LDPE), polylactic acid (PLA), and polyhydroxyalkanoates (PHAs) under three ambient temperatures (4, 15, and 22 °C). We deployed the our previously isolated cold-tolerant plastic-degrading Alcanivorax to simulate the accelerated marine biodegradation process and evaluated the alteration of bacterial growth, plastic films, and released degradation products. Notably, we found that marine biodegradation of PHA films enriched more bacterial amounts, induced more conspicuous morphological damage, and released more microplastics (MPs) and dissolved organic carbon (DOC) under all temperatures compared to LDPE and PLA. Particularly, MPs were released from film edges and cracks with a mean size of 2.8 µm under all temperatures. In addition, the degradation products released by biodegradation of PHA under 22 °C induced the highest acute toxicity to Vibrio fischeri. Our results highlighted that: (1) marine biodegradation of plastics would release millions of MPs per cm2 exposed surface area even in cold environments within 60 days; (2) different marine biodegradation scenarios of these plastics may raise disparate impacts and mitigation-related studies.


Subject(s)
Alcanivoraceae , Polyhydroxyalkanoates , Plastics/metabolism , Alcanivoraceae/metabolism , Polyethylene/metabolism , Temperature , Biodegradation, Environmental , Bacteria/metabolism , Microplastics/metabolism , Polyhydroxyalkanoates/metabolism
7.
Sci Total Environ ; 894: 164960, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37348724

ABSTRACT

This study investigated the interactions between rhizosphere and endosphere bacteria during phytoextraction and how the interactions affect arsenic (As) extraction and carbon (C) fixation of plants. Pot experiments, high-throughput sequencing, metabonomics, and network analysis were integrated. Results showed that positive correlations dominated the interconnections within modules (>95 %), among modules (100 %), and among keystone taxa (>72 %) in the bacterial networks of plant rhizosphere, root endosphere, and shoot endosphere. This confirmed that cooperative interactions occurred between bacteria in the rhizosphere and endosphere during phytoextraction. Modules and keystone taxa positively correlating with plant As extraction and C fixation were identified, indicating that modules and keystone taxa promoted plant As extraction and C fixation simultaneously. This is mainly because modules and keystone taxa in plant rhizosphere, root endosphere, and shoot endosphere carried arsenate reduction and C fixation genes. Meanwhile, they up-regulated the significant metabolites related to plant As tolerance. Additionally, shoot C fixation increased peroxidase activity and biomass thereby facilitating plant As extraction was confirmed. This study revealed the mechanisms of plant-associated bacterial interactions contributing to plant As extraction and C fixation. More importantly, this study provided a new angle of view that phytoextraction can be applied to achieve multiple environmental goals, such as simultaneous soil remediation and C neutrality.


Subject(s)
Arsenic , Microbiota , Arsenic/metabolism , Plant Roots/microbiology , Soil Microbiology , Bacteria/metabolism , Rhizosphere , Carbon Cycle
8.
Sci Total Environ ; 873: 162363, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36828076

ABSTRACT

The produced effluents after shoreline washing contain a certain number of oil droplets and further treatment is necessary. In this study, the innocuous, widely available, and biodegradable sodium caseinate (NaCas) was deployed to capture oil pollutants from oily wastewater. Oil droplets can be effectively and rapidly captured by NaCas and subsequently removed after pH-triggered separation, producing a clean supernatant with low turbidity. The removal efficiency was enhanced by increasing NaCas concentration and separation time. The salinity inhibited the oil removal by increasing the interfacial tension of NaCas and reducing their sorption sites caused by the large particle size. Humic acid negatively influenced the oil separation performance of NaCas because of the competitive sorption and enhanced repulsion force between oil and NaCas. In addition, the increasing temperature was found to augment the oil removal. Factorial analysis revealed the individual factors and two-factor interactions that had significant effects on oil removal. Biotoxicity experiments proved that NaCas can fully offset the inhibitory effect of oil on the photosynthesis of algae and thus promote algae growth. Two post-treatment methods, namely thermal treatment, and biodegradation, can be used for the post-treatment of NaCas/oil precipitation residues. The use of NaCas-assisted responsive separation in the treatment of washing effluents can help achieve a sustainable shoreline oil spill response.


Subject(s)
Caseins , Petroleum Pollution , Caseins/chemistry , Temperature , Particle Size , Salinity
9.
Chemosphere ; 310: 136879, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36257386

ABSTRACT

Despite increasing attention to the influence of unsteady-state volatile organic compounds (VOCs) on the adsorption of activated carbon, studies in this regard are rare. Therefore, in this study, an investigation into the migration and diffusion of unsteady-state VOCs on activated carbon adsorption beds under reverse ventilation was conducted. Here, reverse clean air was introduced when the activated carbon bed reached the penetration point. The influence of reverse ventilation temperature, reverse superficial gas velocity, activated carbon filling height, and different ventilation modes on the adsorption of unsteady toluene by activated carbon were studied. Our experimental results show that when the reverse ventilation temperature increased from 20 °C to 60 °C, the quasi-first-order desorption rate constant increased from 0.00356 min-1 to 0.00807 min-1, an increase in the reverse superficial gas velocity led to a higher rate constant, and at greater reverse superficial gas velocities, the stripping capacity increased. It was observed that the maximum stripping capacity was achieved at a reverse superficial gas velocity of 0.3 m/s. For different activated carbon filling heights, following reverse ventilation, the stripping capacity of a 5 cm and 30 cm activated carbon bed accounted for 41.43% and 65.85% of the original adsorption capacity, respectively. The study concludes that concentration of toluene first increased and then decreased with time under forward ventilation, whereas the concentration gradually decreased under reverse ventilation.


Subject(s)
Volatile Organic Compounds , Adsorption , Charcoal , Toluene , Diffusion
10.
Water Res ; 226: 119234, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36270145

ABSTRACT

Efficient on-site treatment technology is crucial for mitigating marine oily wastewater pollution. This work investigates the ozone (O3), ultraviolet (UV)/O3, UV/O3/persulfate (PS) processes for the treatment of marine oily wastewater, including degradation performance, acute toxicity evaluation, and oil flocs analysis in a benchtop circulating flow photoozonation reactor. Degradation performances have been studied by measuring the degradation rate of total oil concentrations, specific oil components (n-alkanes and polycyclic aromatic hydrocarbons (PAHs)), and total organic carbon (TOC). The results show that UV/O3/PS could significantly enhance the removal efficiency than the other two processes, with above 90% of removal efficiency in 30 min. Acute toxicity analysis further shows that the wastewater quality is significantly improved by four-fold of the EC50 of Vibrio fischeri, and the mortality of Artemia franciscana decreases from 100% to 0% after 48 h exposure. Further, the morphology and functional groups of flocs have been further characterized, showing that the floating flocs could be further degraded especially in UV/O3/PS process. Our study further raised discussions regarding the future on-site application of O3-based systems, based on the results generated from the treatment efficiency, toxicity, and flocs characterization. The regulation of the oxidation strength and optimization of the reaction systems could be a practical strategy for on-site marine oily wastewater treatment.


Subject(s)
Ozone , Water Pollutants, Chemical , Water Purification , Wastewater/analysis , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis , Ultraviolet Rays , Oxidation-Reduction , Hydrogen Peroxide/analysis
11.
Environ Pollut ; 313: 120177, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36116568

ABSTRACT

Understanding microbial responses to hydrocarbon and plastic pollution are crucial for limiting the detrimental impacts of environmental contaminants on marine ecosystems. Herein, we reported a new Alcanivorax species isolated from the North Atlantic Ocean capable of degrading alkanes and polyhydroxybutyrate (PHB) plastic (one of the emerging bioplastics that may capture the future plastic market). The whole-genome sequencing showed that the species harbors three types of alkane 1-monooxygenases (AlkB) and one PHB depolymerase (PhaZ) to initiate the degradation of alkanes and plastics. Growth profiling demonstrated that n-pentadecane (C15, the main alkane in the marine environment due to cyanobacterial production other than oil spills) and PHB could serve as preferential carbon sources. However, the cell membrane composition, PhaZ activity, and expression of three alkB genes were utterly different when grown on C15 and PHB. Further, Alcanivorax was a well-recognized alkane-degrader that participated in the ocean hydrocarbon cycles linking with hydrocarbon production and removal. Our discovery supported that the existing biogeochemical processes may add to the marine ecosystem's resilience to the impacts of plastics.


Subject(s)
Alcanivoraceae , Alcanivoraceae/genetics , Alcanivoraceae/metabolism , Alkanes/metabolism , Atlantic Ocean , Biodegradation, Environmental , Carbon/metabolism , Cytochrome P-450 CYP4A , Ecosystem , Hydrocarbons/analysis , Plastics/metabolism
12.
J Hazard Mater ; 439: 129617, 2022 10 05.
Article in English | MEDLINE | ID: mdl-35872457

ABSTRACT

The emerging demand for the enhancement of biodegradation of persistent organic pollutants from marine oil spills using oil-treating agents to minimize the environmental impacts promotes the development of green dispersants. Shrimp waste is a potential raw material to generate green dispersants. The biodegradability of dispersed oil and dispersants themselves are key factors for the national consideration of the approval, stockpile, and usage of dispersants. However, it is unknown whether shrimp-waste-based dispersant (SWD) has high bioavailability or facilitates the biodegradation of dispersed oil. In this study, we tackled the biodegradation of oil dispersed by a purified SWD. Furthermore, the SWD biodegradability was evaluated by exploring the degradation genes via metagenomic sequencing, analyzing the enzymatic activities for dispersant biodegradation by molecular docking, and discussing the SWD toxicity. We discovered that the SWD facilitated the biodegradation of two crude oils (Alaska North Slope and Marine Fuel-No.6). The metagenomic analysis with molecular docking showed that fresh seawater had feasible enzymes to degrade the SWD to safety components. Additionally, the SWD was low toxic and high bioactive. The findings helped confirm that the purified SWD is an effective and eco-sustainable marine oil spill treating agent and tracked the biodegradation of dispersed oil and the SWD.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Animals , Biodegradation, Environmental , Crustacea , Molecular Docking Simulation , Petroleum/metabolism , Petroleum Pollution/analysis , Seawater , Surface-Active Agents , Water Pollutants, Chemical/analysis
13.
J Hazard Mater ; 436: 129260, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35739779

ABSTRACT

Growing concerns over the risk of accidental releases of oil into the marine environment have emphasized our need to improve both oil spill preparedness and response strategies. Among the available spill response options, dispersants offer the advantages of breaking oil slicks into small oil droplets and promoting their dilution, dissolution, and biodegradation within the water column. Thus dispersants can reduce the probability of oil slicks at sea from reaching coastal regions and reduce their direct impact on mammals, sea birds and shoreline ecosystems. To facilitate marine oil spill response operations, especially addressing spill incidents in remote/Arctic offshore regions, an in-depth understanding of the transportation, fate and effects of naturally/chemically dispersed oil is of great importance. This review provides a synthesis of recent research results studies related to the application of dispersants at the surface and in the deep sea, the fate and transportation of naturally and chemically dispersed oil, and dispersant application in the Arctic and ice-covered waters. Future perspectives have been provided to identify the research gaps and help industries and spill response organizations develop science-based guidelines and protocols for the application of dispersants application.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Animals , Biodegradation, Environmental , Ecosystem , Mammals/metabolism , Petroleum/metabolism , Petroleum Pollution/analysis , Petroleum Pollution/prevention & control , Water , Water Pollutants, Chemical/analysis
14.
Front Microbiol ; 13: 860458, 2022.
Article in English | MEDLINE | ID: mdl-35572674

ABSTRACT

There is an urgent call for contingency planning with effective and eco-friendly oil spill cleanup responses. In situ burning, if properly applied, could greatly mitigate oil in water and minimize the adverse environmental impacts of the spilled oil. Chemical herders have been commonly used along with in situ burning to increase the thickness of spilled oil at sea and facilitate combustion. These chemical surfactant-based agents can be applied to the edges of the oil slick and increase its thickness by reducing the water-oil interfacial tension. Biosurfactants have recently been developed as the next generation of herds with a smaller environmental footprint. In this study, the biosurfactant produced by Rhodococcus erythropolis M25 was evaluated and demonstrated as an effective herding agent. The impact of environmental and operational factors (e.g., temperature, herder dose, spilled oil amount, water salinity, and operation location) on its performance was investigated. A five-factor fractional design was applied to examine the importance of these factors and their impact on herding effectiveness and efficiency. The results of this study showed that higher temperature and a higher dose of herder could result in an increased oil slick thickness changing rate. Differences in water salinity at the same temperature led to the same trend, that is, the herding process effectively goes up with increasing herder-oil ratio (HOR). Further large-scale testing needs to be conducted for evaluating the applicability of the developed bioherder in the field.

15.
Microb Cell Fact ; 21(1): 31, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35248031

ABSTRACT

BACKGROUND: Converting carbon dioxide (CO2) into value-added chemicals using engineered cyanobacteria is a promising strategy to tackle the global warming and energy shortage issues. However, most cyanobacteria are autotrophic and use CO2 as a sole carbon source, which makes it hard to compete with heterotrophic hosts in either growth or productivity. One strategy to overcome this bottleneck is to introduce sugar utilization pathways to enable photomixotrophic growth with CO2 and sugar (e.g., glucose and xylose). Advances in engineering mixotrophic cyanobacteria have been obtained, while a systematic interrogation of these engineered strains is missing. This work aimed to fill the gap at omics level. RESULTS: We first constructed two engineered Synechococcus elongatus YQ2-gal and YQ3-xyl capable of utilizing glucose and xylose, respectively. To investigate the metabolic mechanism, transcriptomic and metabolomic analysis were then performed in the engineered photomixotrophic strains YQ2-gal and YQ3-xyl. Transcriptome and metabolome of wild-type S. elongatus were set as baselines. Increased abundance of metabolites in glycolysis or pentose phosphate pathway indicated that efficient sugar utilization significantly enhanced carbon flux in S. elongatus as expected. However, carbon flux was redirected in strain YQ2-gal as more flowed into fatty acids biosynthesis but less into amino acids. In strain YQ3-xyl, more carbon flux was directed into synthesis of sucrose, glucosamine and acetaldehyde, while less into fatty acids and amino acids. Moreover, photosynthesis and bicarbonate transport could be affected by upregulated genes, while nitrogen transport and assimilation were regulated by less transcript abundance of related genes in strain YQ3-xyl with utilization of xylose. CONCLUSIONS: Our work identified metabolic mechanism in engineered S. elongatus during photomixotrophic growth, where regulations of fatty acids metabolism, photosynthesis, bicarbonate transport, nitrogen assimilation and transport are dependent on different sugar utilization. Since photomixotrophic cyanobacteria is regarded as a promising cell factory for bioproduction, this comprehensive understanding of metabolic mechanism of engineered S. elongatus during photomixotrophic growth would shed light on the engineering of more efficient and controllable bioproduction systems based on this potential chassis.


Subject(s)
Synechococcus , Transcriptome , Metabolic Engineering , Metabolomics , Photosynthesis , Synechococcus/genetics , Synechococcus/metabolism
16.
Appl Environ Microbiol ; 88(5): e0215121, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35020455

ABSTRACT

The global increase in marine transportation of dilbit (diluted bitumen) can increase the risk of spills, and the application of chemical dispersants remains a common response practice in spill events. To reliably evaluate dispersant effects on dilbit biodegradation over time, we set large-scale (1,500 mL) microcosms without nutrient addition using a low dilbit concentration (30 ppm). Shotgun metagenomics and metatranscriptomics were deployed to investigate microbial community responses to naturally and chemically dispersed dilbit. We found that the large-scale microcosms could produce more reproducible community trajectories than small-scale (250 mL) ones based on the 16S rRNA gene amplicon sequencing. In the early-stage large-scale microcosms, multiple genera were involved in the biodegradation of dilbit, while dispersant addition enriched primarily Alteromonas and competed for the utilization of dilbit, causing depressed degradation of aromatics. The metatranscriptomic-based metagenome-assembled genomes (MAG) further elucidated early-stage microbial antioxidation mechanism, which showed that dispersant addition triggered the increased expression of the antioxidation process genes of Alteromonas species. Differently, in the late stage, the microbial communities showed high diversity and richness and similar compositions and metabolic functions regardless of dispersant addition, indicating that the biotransformation of remaining compounds can occur within the post-oil communities. These findings can guide future microcosm studies and the application of chemical dispersants for responding to a marine dilbit spill. IMPORTANCE In this study, we employed microcosms to study the effects of marine dilbit spill and dispersant application on microbial community dynamics over time. We evaluated the impacts of microcosm scale and found that increasing the scale is beneficial for reducing community stochasticity, especially in the late stage of biodegradation. We observed that dispersant application suppressed aromatics biodegradation in the early stage (6 days), whereas exerting insignificant effects in the late stage (50 days), from both substance removal and metagenomic/metatranscriptomic perspectives. We further found that Alteromonas species are vital for the early-stage chemically dispersed oil biodegradation and clarified their degradation and antioxidation mechanisms. These findings help us to better understand microcosm studies and microbial roles for biodegrading dilbit and chemically dispersed dilbit and suggest that dispersant evaluation in large-scale systems and even through field trails would be more realistic after marine oil spill response.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Biodegradation, Environmental , Metagenome , Metagenomics , Petroleum/metabolism , Petroleum Pollution/analysis , RNA, Ribosomal, 16S/genetics , Seawater/chemistry , Water Pollutants, Chemical/analysis
17.
Water Res ; 211: 118047, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35033742

ABSTRACT

The miniaturization of reaction processes by microreactors offers many significant advantages over the use of larger, conventional reactors. Microreactors' interior structures exhibit comparatively higher surface area-to-volume ratios, which reduce reactant diffusion distances, enable faster and more efficient heat and mass transfer, and better control over process conditions. These advantages can be exploited to significantly enhance the performance of advanced oxidation processes (AOPs) commonly used for the removal of water pollutants. This comprehensive review of the rapidly emerging area of environmental microfluidics describes recent advances in the development and application of microreactors to AOPs for water and wastewater treatment. Consideration is given to the hydrodynamic properties, construction materials, fabrication techniques, designs, process features, and upscaling of microreactors used for AOPs. The use of microreactors for various AOP types, including photocatalytic, electrochemical, Fenton, ozonation, and plasma-phase processes, showcases how microfluidic technology enhances mass transfer, improves treatment efficiency, and decreases the consumption of energy and chemicals. Despite significant advancements of microreactor technology, organic pollutant degradation mechanisms that operate during microscale AOPs remain poorly understood. Moreover, limited throughput capacity of microreactor systems significantly restrains their industrial-scale applicability. Since large microreactor-inspired AOP systems are needed to meet the high-throughput requirements of the water treatment sector, scale-up strategies and recommendations are suggested as priority research opportunities. While microstructured reactor technology remains in an early stage of development, this work offers valuable insight for future research and development of AOPs in microreactors for environmental purposes.


Subject(s)
Water Pollutants, Chemical , Water Purification , Industry , Oxidation-Reduction , Wastewater , Water Pollutants, Chemical/analysis
18.
Bioresour Technol ; 345: 126468, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34864175

ABSTRACT

Chemical dispersants have been widely applied to tackle oil spills, but their effects on oil biodegradation in global aquatic systems with different salinities are not well understood. Here, both experiments and advanced machine learning-aided causal inference analysis were applied to evaluate related processes. A halotolerant oil-degrading and biosurfactant-producing species was selected and characterized within the salinity of 0-70 g/L NaCl. Notably, dispersant addition can relieve the biodegradation barriers caused by high salinities. To navigate the causal relationships behind the experimental data, a structural causal model to quantitatively estimate the strength of causal links among salinity, dispersant addition, cell abundance, biosurfactant productivity and oil biodegradation was built. The estimated causal effects were integrated into a weighted directed acyclic graph, which showed that overall positive effects of dispersant addition on oil biodegradation was mainly through the enrichment of cell abundance. These findings can benefit decision-making prior dispersant application under different saline environments.


Subject(s)
Petroleum Pollution , Petroleum , Water Pollutants, Chemical , Biodegradation, Environmental , Lipids , Machine Learning , Salinity , Surface-Active Agents , Water Pollutants, Chemical/analysis
19.
Bioresour Technol ; 339: 125602, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34311406

ABSTRACT

The importance of lipopeptide micelles in environmental applications has been highlighted. These vessels exhibit various sizes, shapes, and surface properties under different environmental conditions. An in-depth understanding of the tunable assembling behavior of biosurfactant micelles is of great importance for their applications. However, a systematic review of such behaviors with assorted micro/nano micellar structures under given environmental conditions, particularly under low temperature and high salinity, remains untapped. Such impacts on their environmental applications have yet to be summarized. This review tried to fill the knowledge gaps by providing a comprehensive summary of the recent knowledge advancement in genetically regulated lipopeptides production, micelles associated decontamination mechanisms in low temperature and high salinity environments, and up-to-date environmental applications. This work is expected to deliver valuable insights to guide lipopeptide design and discovery. The mechanisms concluded in this study could inspire the forthcoming research efforts in the advanced environmental application of lipopeptide micelles.


Subject(s)
Lipopeptides , Micelles , Biodegradation, Environmental , Salinity , Surface-Active Agents
20.
Bioresour Technol ; 337: 125404, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34139564

ABSTRACT

Heavy crude oil (HCO) pollution has gained global attention, but traditional bioremediating practices demonstrate limited effectiveness. This study developed magnetic nanoparticles decorated bacteria (MNPB) using an oil-degrading and biosurfactant-producing Rhodococcus erythropolis species and identified a novel access-dispersion-recovery strategy for enhanced HCO pollution mitigation. The strategy entails (1) magnetic navigation of the MNPB towards HCO layer, (2) enhanced oil dispersion and formation of suspended oil-bacteria aggregates, and (3) magnetic recovery of these aggregates. The UV-spectrophotometer analysis showed that this strategy can enable up to 62% removal of HCO. The GC-MS analysis demonstrated that the MNPB enhanced the degradation of low-molecular-weight aromatics comparing with the pure bacteria, and the recovery process further removed oil-bacteria aggregates and entrained high-molecular-weight aromatics. The feasibility of using MNPB to mitigate HCO pollution could shed light on the emerging bioremediation applications.


Subject(s)
Magnetite Nanoparticles , Petroleum Pollution , Petroleum , Rhodococcus , Biodegradation, Environmental
SELECTION OF CITATIONS
SEARCH DETAIL