Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Photochem Photobiol B ; 258: 112995, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39096720

ABSTRACT

Endogenous hypochlorous acid (HOCl) is one of the most important reactive oxygen species (ROS) and acts as a distinct biomarker that is involved in various inflammatory responses including rheumatoid arthritis (RA). Therefore, it's crucial to develop an efficient method for the tracking and analysis of HOCl levels in vivo. Natural products continue to be compounds of interest, because they not only offer diverse and specific molecular scaffolds but also provide invaluable sources for new drug discovery. Herein, we firstly demonstrated harmaline (HML), a natural alkaloid mainly found in Peganum harmala L, could be acted as a novel fluorescent probe for HOCl with exceptional precision and responsiveness. Remarkably, this probe not only specifically tracked HOCl levels in cells and inflammatory RA mouse models, but also exhibited effective anti-inflammatory effects on RAW264.7 cells and anti-proliferative effects on fibroblast-like synoviocytes. Furthermore, HML has the potential to alleviate LPS-induced inflammation by inhibiting the NF-κB signaling pathway. This study represents the first example of a natural product that can simultaneously act as a fluorescent probe for specific ROS and a promising therapeutic candidate for a specific disease, which will undoubtedly extend the application of fluorophore-rich natural products.

2.
Arch Pharm (Weinheim) ; : e2400274, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-39031554

ABSTRACT

Tetrandrine (TET) is a natural bis-benzylisoquinoline alkaloid isolated from Stephania species with a wide range of biological and pharmacologic activities; it mainly serves as an anti-inflammatory agent or antitumor adjuvant in clinical applications. However, limitations such as prominent hydrophobicity, severe off-target toxicity, and low absorption result in suboptimal therapeutic outcomes preventing its widespread adoption. Nanoparticles have proven to be efficient devices for targeted drug delivery since drug-carrying nanoparticles can be passively transported to the tumor site by the enhanced permeability and retention (EPR) effects, thus securing a niche in cancer therapies. Great progress has been made in nanocarrier construction for TET delivery due to their outstanding advantages such as increased water-solubility, improved biodistribution and blood circulation, reduced off-target irritation, and combinational therapy. Herein, we systematically reviewed the latest advancements in TET-loaded nanoparticles and their respective features with the expectation of providing perspective and guidelines for future research and potential applications of TET.

3.
J Exp Clin Cancer Res ; 43(1): 207, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39054545

ABSTRACT

Targeted delivery and precise release of toxins is a prospective strategy for the treatment of triple-negative breast cancer (TNBC), yet the flexibility to incorporate both properties simultaneously remains tremendously challenging in the X-drug conjugate fields. As critical components in conjugates, linkers could flourish in achieving optimal functionalities. Here, we pioneered a pH-hypersensitive tumor-targeting aptamer AS1411-triptolide conjugate (AS-TP) to achieve smart release of the toxin and targeted therapy against TNBC. The multifunctional acetal ester linker in the AS-TP site-specifically blocked triptolide toxicity, quantitatively sustained aptamer targeting, and ensured the circulating stability. Furthermore, the aptamer modification endowed triptolide with favorable water solubility and bioavailability and facilitated endocytosis of conjugated triptolide by TNBC cells in a nucleolin-dependent manner. The integrated superiorities of AS-TP promoted the preferential intra-tumor triptolide accumulation in xenografted TNBC mice and triggered the in-situ triptolide release in the weakly acidic tumor microenvironment, manifesting striking anti-TNBC efficacy and virtually eliminated toxic effects beyond clinical drugs. This study illustrated the therapeutic potential of AS-TP against TNBC and proposed a promising concept for the development of nucleic acid-based targeted anticancer drugs.


Subject(s)
Aptamers, Nucleotide , Diterpenes , Epoxy Compounds , Phenanthrenes , Triple Negative Breast Neoplasms , Diterpenes/pharmacology , Diterpenes/therapeutic use , Diterpenes/chemistry , Epoxy Compounds/pharmacology , Epoxy Compounds/therapeutic use , Epoxy Compounds/chemistry , Phenanthrenes/pharmacology , Phenanthrenes/therapeutic use , Phenanthrenes/chemistry , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Animals , Humans , Mice , Female , Aptamers, Nucleotide/pharmacology , Aptamers, Nucleotide/therapeutic use , Xenograft Model Antitumor Assays , Cell Line, Tumor , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use
4.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38543129

ABSTRACT

(1) Background: Polygonatum cyrtonema is a medicinal plant, and its polysaccharides are used for immunomodulation and the treatment of hyperglycemia. Investigation of the tissue distribution and pharmacokinetics of P. cyrtonema polysaccharide can further elucidate its pharmacological mechanisms. (2) Methods: A fluorescence-labeling approach using rhodamine B (RhB) as a fluorescent molecular probe was used for the quantitative assessment of the polysaccharide from dried P. cyrtonema (DPC1) samples, and the pharmacokinetics and tissue distribution of DPC1 were evaluated in mice after intraperitoneal or oral administration. (3) Results: DPC1 was successfully labeled with RhB, showing degrees of fluorescence labeling at 0.453% and 0.568% as determined by the ultraviolet and enzyme marker methods, respectively. DPC1-RhB was rapidly absorbed into the bloodstream after oral and intraperitoneal administration. Pharmacokinetic characteristics showed that oral administration and intraperitoneal administration were consistent with the features of a two-compartment model. (4) Conclusion: After administration, DPC1-RhB was primarily distributed in the tissues of the heart, spleen, and lung, indicating that the drug has a targeted effect on these tissues. Overall, the findings provide a comprehensive reference for the in vivo distribution of DPC1, together with a foundation for further elucidation of its pharmacological mechanisms and the development and application of DPC1 formulations.

5.
J Adv Res ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38471647

ABSTRACT

INTRODUCTION: Phosphatidylinositol 3-kinases (PI3Ks) overexpression can elicit cellular homeostatic dysregulation, which further contributes to tumorigenesis, with PI3Kα emerging as the most prevalent mutant isoform kinase among PI3Ks. Therefore, selective inhibitors targeting PI3Kα have attracted considerable interest in recent years. Molecular hybridization, with the advantage of simplified pharmacokinetics and drug-drug interactions, emerged as one of the important avenues for discovering potential drugs. OBJECTIVES: This study aimed to construct PI3Kα inhibitors by hybridization and investigate their antitumor activity and mechanism. METHODS: 26 quinazoline-2-indolinone derivatives were obtained by molecular hybridization, and their structure-activity relationship was analyzed by MTT, in vitro kinase activity and molecular docking. The biological evaluation of compound 8 was performed by transwell, flow cytometry, laser scanning confocal microscopy, Western blot, CTESA and immunohistochemistry. RESULTS: Here, we employed molecular hybridization methods to construct a series of quinazoline-2-indolinone derivatives as PI3Kα selective inhibitors. Encouragingly, representative compound 8 exhibited a PI3Kα enzymatic IC50 value of 9.11 nM and 10.41/16.99/37.53-fold relative to the biochemical selectivity for PI3Kß/γ/δ, respectively. Moreover, compound 8 effectively suppressed the viability of B16, HCT116, MCF-7, H22, PC-3, and A549 cells (IC50 values: 0.2 µM âˆ¼ 0.98 µM), and dramatically inhibited the proliferation and migration of NSCLC cells, as well as induced mitochondrial apoptosis through the PI3K/Akt/mTOR pathway. Importantly, compound 8 demonstrated potent in vivo anti-tumor activity in non-small cell lung cancer mouse models without visible toxicity. CONCLUSIONS: This study presented a new avenue for the development of PI3Kα inhibitors and provided a solid foundation for novel QHIDs as potential future therapies for the treatment of NSCLC.

6.
Biomed Pharmacother ; 168: 115784, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37879215

ABSTRACT

Triple-negative breast cancer (TNBC), as the most aggressive subtype of breast cancer, presents a scarcity of miraculous drugs in suppressing its proliferation and metastasis. Bruceine A (BA) is a functional group-rich quassin compound with extensive and distinctive pharmacological activities. Within the present study, we investigated the capabilities of BA in suppressing TNBC proliferation and metastasis as well as its potential mechanisms. The results displayed that BA dramatically repressed the proliferation of MDA-MB-231 and 4T1 cells with corresponding IC50 values of 78.4 nM and 524.6 nM, respectively. Concurrently, BA arrested cells in G1 phase by downregulating cycle-related proteins Cyclin D1 and CDK4. Furthermore, BA distinctly induced mitochondrial dysfunction as manifested by diminished mitochondrial membrane potential, elevated reactive oxygen species generation, minimized ATP production, and Caspase-dependent activation of the mitochondrial apoptosis pathway. Additionally, BA restrained the invasion and metastasis of TNBC cells by repressing MMP9 and MMP2 expression. Intriguingly, after pretreatment with MEK activator C16-PAF, the inhibitory effect of BA on MEK/ERK pathway was notably diminished, while the proliferation suppression and metastasis repression exerted by BA were all strikingly curtailed. Molecular docking illustrated that BA potently combined with residues on the MEK1 protein with the presence of diverse intermolecular interactions. Ultimately, BA effectively suppressed tumor growth in the 4T1 xenograft tumor model with no detectable visceral toxicity in the high-dose group and, astonishingly, repressed tumor metastasis in the 4T1-luc lung metastasis model. Collectively, our study demonstrates that BA is a promising chemotherapeutic agent for treating TNBC and suppressing lung metastasis.


Subject(s)
Lung Neoplasms , Quassins , Triple Negative Breast Neoplasms , Humans , MAP Kinase Signaling System , Cell Proliferation , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , Molecular Docking Simulation , Apoptosis , Quassins/pharmacology , Mitochondria , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism
7.
Front Pharmacol ; 14: 1149478, 2023.
Article in English | MEDLINE | ID: mdl-37056992

ABSTRACT

Bruceine A (BA), a quassic ester from bruceine javanica, regulates diverse intracellular signal transduction pathways and manifests a variety of biological activities, however, its pharmacological mechanism in treating colon cancer (CC) is unclear. In this study, we investigated the anticancer effects of BA on CC cells and the underlying mechanisms. The network pharmacology research indicated that Akt1 and Jun and PI3K/Akt pathways are the predominant targets and critical signaling pathways, respectively, for BA treatment of CC. Meanwhile, molecular docking results implied that BA could conjugate to pivotal proteins in the PI3K/Akt pathway. BA remarkably suppressed the proliferation of CC cells HCT116 and CT26 with 48-h IC50 of 26.12 and 229.26 nM, respectively, and the expression of p-PI3K/p-Akt was restrained by BA at the molecular level as verified by Western blot assay. Further mechanistic studies revealed BA impacted cell cycle-related proteins by regulating the expression of P27 (a protein bridging the PI3K/Akt signaling pathway with cycle-related proteins), arresting the cell cycle in the G2 phase, inhibiting the proliferation of HCT116 and CT26, and facilitated the apoptosis in CC cells by activating the mitochondria-associated apoptosis protein Bax and accumulating reactive oxygen species, in addition to BA apparently inhibited the migration of CC cells. Taken together, our results demonstrated that BA might be a promising chemotherapy drug in the treatment of CC.

SELECTION OF CITATIONS
SEARCH DETAIL