Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Cell Rep Med ; 4(11): 101266, 2023 11 21.
Article En | MEDLINE | ID: mdl-37944530

The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has fueled the COVID-19 pandemic with its enduring medical and socioeconomic challenges because of subsequent waves and long-term consequences of great concern. Here, we chart the molecular basis of COVID-19 pathogenesis by analyzing patients' immune responses at single-cell resolution across disease course and severity. This approach confirms cell subpopulation-specific dysregulation in COVID-19 across disease course and severity and identifies a severity-associated activation of the receptor for advanced glycation endproducts (RAGE) pathway in monocytes. In vitro THP1-based experiments indicate that monocytes bind the SARS-CoV-2 S1-receptor binding domain (RBD) via RAGE, pointing to RAGE-Spike interaction enabling monocyte infection. Thus, our results demonstrate that RAGE is a functional receptor of SARS-CoV-2 contributing to COVID-19 severity.


COVID-19 , Humans , Monocytes , Pandemics , Receptor for Advanced Glycation End Products/genetics , SARS-CoV-2
2.
Sci Adv ; 9(48): eadh2726, 2023 12.
Article En | MEDLINE | ID: mdl-38019906

Copy number variations at 7q11.23 cause neurodevelopmental disorders with shared and opposite manifestations. Deletion causes Williams-Beuren syndrome featuring hypersociability, while duplication causes 7q11.23 microduplication syndrome (7Dup), frequently exhibiting autism spectrum disorder (ASD). Converging evidence indicates GTF2I as key mediator of the cognitive-behavioral phenotypes, yet its role in cortical development and behavioral hallmarks remains largely unknown. We integrated proteomic and transcriptomic profiling of patient-derived cortical organoids, including longitudinally at single-cell resolution, to dissect 7q11.23 dosage-dependent and GTF2I-specific disease mechanisms. We observed dosage-dependent impaired dynamics of neural progenitor proliferation, transcriptional imbalances, and highly specific alterations in neuronal output, leading to precocious excitatory neuron production in 7Dup, which was rescued by restoring physiological GTF2I levels. Transgenic mice with Gtf2i duplication recapitulated progenitor proliferation and neuronal differentiation defects alongside ASD-like behaviors. Consistently, inhibition of lysine demethylase 1 (LSD1), a GTF2I effector, was sufficient to rescue ASD-like phenotypes in transgenic mice, establishing GTF2I-LSD1 axis as a molecular pathway amenable to therapeutic intervention in ASD.


Autism Spectrum Disorder , Transcription Factors, TFIII , Transcription Factors, TFII , Mice , Animals , Humans , Autism Spectrum Disorder/genetics , DNA Copy Number Variations , Proteomics , Social Behavior , Phenotype , Mice, Transgenic , Cell Differentiation/genetics , Histone Demethylases/genetics , Transcription Factors, TFIII/genetics , Transcription Factors, TFII/genetics
3.
Transl Psychiatry ; 12(1): 520, 2022 12 20.
Article En | MEDLINE | ID: mdl-36539399

Brain organoids are becoming increasingly relevant to dissect the molecular mechanisms underlying psychiatric and neurological conditions. The in vitro recapitulation of key features of human brain development affords the unique opportunity of investigating the developmental antecedents of neuropsychiatric conditions in the context of the actual patients' genetic backgrounds. Specifically, multiple strategies of brain organoid (BO) differentiation have enabled the investigation of human cerebral corticogenesis in vitro with increasing accuracy. However, the field lacks a systematic investigation of how closely the gene co-expression patterns seen in cultured BO from different protocols match those observed in fetal cortex, a paramount information for ensuring the sensitivity and accuracy of modeling disease trajectories. Here we benchmark BO against fetal corticogenesis by integrating transcriptomes from in-house differentiated cortical BO (CBO), other BO systems, human fetal brain samples processed in-house, and prenatal cortices from the BrainSpan Atlas. We identified co-expression patterns and prioritized hubs of human corticogenesis and CBO differentiation, highlighting both well-preserved and discordant trends across BO protocols. We evaluated the relevance of identified gene modules for neurodevelopmental disorders and psychiatric conditions finding significant enrichment of disease risk genes especially in modules related to neuronal maturation and synapsis development. The longitudinal transcriptomic analysis of CBO revealed a two-step differentiation composed of a fast-evolving phase, corresponding to the appearance of the main cell populations of the cortex, followed by a slow-evolving one characterized by milder transcriptional changes. Finally, we observed heterochronicity of differentiation across BO models compared to fetal cortex. Our approach provides a framework to directly compare the extent of in vivo/in vitro alignment of neurodevelopmentally relevant processes and their attending temporalities, structured as a resource to query for modeling human corticogenesis and the neuropsychiatric outcomes of its alterations.


Benchmarking , Cerebral Cortex , Humans , Brain , Neurogenesis , Organoids
4.
Science ; 375(6582): eabe8244, 2022 02 18.
Article En | MEDLINE | ID: mdl-35175820

Convergent evidence associates exposure to endocrine disrupting chemicals (EDCs) with major human diseases, even at regulation-compliant concentrations. This might be because humans are exposed to EDC mixtures, whereas chemical regulation is based on a risk assessment of individual compounds. Here, we developed a mixture-centered risk assessment strategy that integrates epidemiological and experimental evidence. We identified that exposure to an EDC mixture in early pregnancy is associated with language delay in offspring. At human-relevant concentrations, this mixture disrupted hormone-regulated and disease-relevant regulatory networks in human brain organoids and in the model organisms Xenopus leavis and Danio rerio, as well as behavioral responses. Reinterrogating epidemiological data, we found that up to 54% of the children had prenatal exposures above experimentally derived levels of concern, reaching, for the upper decile compared with the lowest decile of exposure, a 3.3 times higher risk of language delay.


Endocrine Disruptors/toxicity , Language Development Disorders/epidemiology , Neurodevelopmental Disorders/epidemiology , Prenatal Exposure Delayed Effects , Transcriptome/drug effects , Animals , Autism Spectrum Disorder/epidemiology , Autism Spectrum Disorder/genetics , Brain/drug effects , Brain/embryology , Child, Preschool , Estrogens/metabolism , Female , Fluorocarbons/analysis , Fluorocarbons/toxicity , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Humans , Locomotion/drug effects , Neural Stem Cells/drug effects , Neurodevelopmental Disorders/genetics , Organoids , Phenols/analysis , Phenols/toxicity , Phthalic Acids/analysis , Phthalic Acids/toxicity , Pregnancy , Risk Assessment , Thyroid Hormones/metabolism , Xenopus laevis , Zebrafish
5.
Front Cell Neurosci ; 15: 748849, 2021.
Article En | MEDLINE | ID: mdl-34720882

Myelin is the lipidic insulating structure enwrapping axons and allowing fast saltatory nerve conduction. In the central nervous system, myelin sheath is the result of the complex packaging of multilamellar extensions of oligodendrocyte (OL) membranes. Before reaching myelinating capabilities, OLs undergo a very precise program of differentiation and maturation that starts from OL precursor cells (OPCs). In the last 20 years, the biology of OPCs and their behavior under pathological conditions have been studied through several experimental models. When co-cultured with neurons, OPCs undergo terminal maturation and produce myelin tracts around axons, allowing to investigate myelination in response to exogenous stimuli in a very simple in vitro system. On the other hand, in vivo models more closely reproducing some of the features of human pathophysiology enabled to assess the consequences of demyelination and the molecular mechanisms of remyelination, and they are often used to validate the effect of pharmacological agents. However, they are very complex, and not suitable for large scale drug discovery screening. Recent advances in cell reprogramming, biophysics and bioengineering have allowed impressive improvements in the methodological approaches to study brain physiology and myelination. Rat and mouse OPCs can be replaced by human OPCs obtained by induced pluripotent stem cells (iPSCs) derived from healthy or diseased individuals, thus offering unprecedented possibilities for personalized disease modeling and treatment. OPCs and neural cells can be also artificially assembled, using 3D-printed culture chambers and biomaterial scaffolds, which allow modeling cell-to-cell interactions in a highly controlled manner. Interestingly, scaffold stiffness can be adopted to reproduce the mechanosensory properties assumed by tissues in physiological or pathological conditions. Moreover, the recent development of iPSC-derived 3D brain cultures, called organoids, has made it possible to study key aspects of embryonic brain development, such as neuronal differentiation, maturation and network formation in temporal dynamics that are inaccessible to traditional in vitro cultures. Despite the huge potential of organoids, their application to myelination studies is still in its infancy. In this review, we shall summarize the novel most relevant experimental approaches and their implications for the identification of remyelinating agents for human diseases such as multiple sclerosis.

6.
EMBO J ; 40(2): e107213, 2021 01 15.
Article En | MEDLINE | ID: mdl-33175425

COVID-19 is increasingly understood as a systemic disease with pathogenic manifestations beyond the respiratory tract. Recent work by Ramani et al (2020) dissects the cellular and molecular mechanisms of SARS-CoV-2's neurotrophic properties, using viral exposure of human brain organoids. Their findings highlight neurons as primary target of cerebral SARS-CoV-2 infection and uncover its Tau-related neurotoxicity.


Brain/pathology , Brain/virology , COVID-19/pathology , Organoids/pathology , tau Proteins/metabolism , Humans , Neurons/pathology , Neurons/virology , Organoids/virology , SARS-CoV-2/pathogenicity
7.
Mol Autism ; 11(1): 69, 2020 09 10.
Article En | MEDLINE | ID: mdl-32912338

The complex pathophysiology of autism spectrum disorder encompasses interactions between genetic and environmental factors. On the one hand, hundreds of genes, converging at the functional level on selective biological domains such as epigenetic regulation and synaptic function, have been identified to be either causative or risk factors of autism. On the other hand, exposure to chemicals that are widespread in the environment, such as endocrine disruptors, has been associated with adverse effects on human health, including neurodevelopmental disorders. Interestingly, experimental results suggest an overlap in the regulatory pathways perturbed by genetic mutations and environmental factors, depicting convergences and complex interplays between genetic susceptibility and toxic insults. The pervasive nature of chemical exposure poses pivotal challenges for neurotoxicological studies, regulatory agencies, and policy makers. This highlights an emerging need of developing new integrative models, including biomonitoring, epidemiology, experimental, and computational tools, able to capture real-life scenarios encompassing the interaction between chronic exposure to mixture of substances and individuals' genetic backgrounds. In this review, we address the intertwined roles of genetic lesions and environmental insults. Specifically, we outline the transformative potential of stem cell models, coupled with omics analytical approaches at increasingly single cell resolution, as converging tools to experimentally dissect the pathogenic mechanisms underlying neurodevelopmental disorders, as well as to improve developmental neurotoxicology risk assessment.


Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/physiopathology , Gene-Environment Interaction , Autism Spectrum Disorder/epidemiology , Genetic Predisposition to Disease , Humans , Risk Factors , Systematic Reviews as Topic
8.
Mol Autism ; 11(1): 42, 2020 06 01.
Article En | MEDLINE | ID: mdl-32487215

Patients diagnosed with chromosome microdeletions or duplications, known as copy number variants (CNVs), present a unique opportunity to investigate the relationship between patient genotype and cell phenotype. CNVs have high genetic penetrance and give a good correlation between gene locus and patient clinical phenotype. This is especially effective for the study of patients with neurodevelopmental disorders (NDD), including those falling within the autism spectrum disorders (ASD). A key question is whether this correlation between genetics and clinical presentation at the level of the patient can be translated to the cell phenotypes arising from the neurodevelopment of patient induced pluripotent stem cells (iPSCs).Here, we examine how iPSCs derived from ASD patients with an associated CNV inform our understanding of the genetic and biological mechanisms underlying the aetiology of ASD. We consider selection of genetically characterised patient iPSCs; use of appropriate control lines; aspects of human neurocellular biology that can capture in vitro the patient clinical phenotype; and current limitations of patient iPSC-based studies. Finally, we consider how future research may be enhanced to maximise the utility of CNV patients for research of pathological mechanisms or therapeutic targets.


Autism Spectrum Disorder/etiology , Autism Spectrum Disorder/metabolism , DNA Copy Number Variations , Disease Susceptibility , Induced Pluripotent Stem Cells/metabolism , Animals , Gene Expression Regulation , Genetic Predisposition to Disease , Genomics/methods , Humans , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/metabolism , Neurons/metabolism , Synapses/metabolism
9.
Stem Cell Reports ; 13(5): 847-861, 2019 11 12.
Article En | MEDLINE | ID: mdl-31607568

The regulation of the proliferation and polarity of neural progenitors is crucial for the development of the brain cortex. Animal studies have implicated glycogen synthase kinase 3 (GSK3) as a pivotal regulator of both proliferation and polarity, yet the functional relevance of its signaling for the unique features of human corticogenesis remains to be elucidated. We harnessed human cortical brain organoids to probe the longitudinal impact of GSK3 inhibition through multiple developmental stages. Chronic GSK3 inhibition increased the proliferation of neural progenitors and caused massive derangement of cortical tissue architecture. Single-cell transcriptome profiling revealed a direct impact on early neurogenesis and uncovered a selective role of GSK3 in the regulation of glutamatergic lineages and outer radial glia output. Our dissection of the GSK3-dependent transcriptional network in human corticogenesis underscores the robustness of the programs determining neuronal identity independent of tissue architecture.


Cerebral Cortex/cytology , Glycogen Synthase Kinase 3/metabolism , Neurogenesis , Neurons/cytology , Organoids/cytology , Cell Line , Cell Proliferation , Cerebral Cortex/metabolism , Gene Deletion , Glycogen Synthase Kinase 3/genetics , Humans , Neurons/metabolism , Organoids/metabolism , Transcriptome
10.
United European Gastroenterol J ; 4(2): 297-304, 2016 Apr.
Article En | MEDLINE | ID: mdl-27087960

BACKGROUND: Acute abdominal pain (AAP) is one of the most common causes of referral to an emergency department (ED), but information about its impact is limited. OBJECTIVES: The objectives of this article are to define the prevalence of AAP among ED visits in a large university hospital and analyze its main clinical features. METHODS: All patients admitted at the Sant'Orsola, Malpighi University Hospital of Bologna ED on 12 a priori selected sample days in 2013 were included. General data were recorded for each patient. A total of 192 clinical variables were recorded for each patient with abdominal pain. RESULTS: During the observation period the ED assisted 2623 patients with a daily admission rate of 219 ± 20 (mean ± SD). Of these, 239 patients complained of AAP as their chief complaint at entry (prevalence = 9.1%). AAP prevalence was significantly higher in females than in males (10.4% vs. 7.8%; OR = 1.37; p = 0.021) as well as in foreign over Italian patients (13.2% vs. 8.5%; OR = 1.64; p = 0.007). The most frequent ED operative diagnoses were non-specific abdominal pain (n = 86, 36.0%) and gastrointestinal (GI) tract-related pain (n = 79, 33.1%; n = 19 upper GI, n = 60 lower GI). CONCLUSIONS: AAP is a common cause of referral at EDs. Despite technological advances, non-specific abdominal pain is still the main operative diagnosis.

...