Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 653: 1445-1457, 2019 Feb 25.
Article in English | MEDLINE | ID: mdl-30759583

ABSTRACT

Bitumen extraction via surface mining in the Athabasca Oil Sands Region results in permanent alteration of boreal forests and wetlands. As part of their legal requirements, oil companies must reclaim disturbed landscapes into functioning ecosystems. Despite considerable work establishing upland forests, only two pilot wetland-peatland systems integrated within a watershed have been constructed to date. Peatland reclamation is challenging as it requires complete reconstruction with few guidelines or previous work in this region. Furthermore, the variable sub-humid climate and salinity of tailings materials present additional challenges. In 2012, Syncrude Canada Ltd. constructed a 52-ha pilot upland-wetland system, the Sandhill Fen Watershed, which was designed with a pump and underdrain system to provide freshwater and enhance drainage to limit salinization from underlying soft tailings materials that have elevated electrical conductivity (EC) and Na+. The objective of this research is to evaluate the hydrochemical response of a constructed wetland to variations in hydrology and water management with respect to water sources, flow pathways and major chemical transformations in the three years following commissioning. Results suggest that active water management practices in 2013 kept EC relatively low, with most wetland sites <1000 µS/cm with Na+ concentrations <250 mg/L. With limited management in 2014 and 2015, the EC increased in the wetland to >1000 µS/cm in 2014 and >2000 µS/cm in 2015. The most notable change was the emergence of several Na+ enriched zones in the margins. Here, Na+ concentrations were two to three times higher than other sites. Stable isotopes of water support that the Na+ enriched areas arise from underlying process-affected water in the tailings, providing evidence of its upward transport and seepage under a natural hydrologic regime. In future years, salinity is expected to evolve in its flow pathways and diffusion, yet the timeline and extent of these changes are uncertain.

2.
Sci Total Environ ; 642: 436-446, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-29906733

ABSTRACT

Time series remote sensing vegetation indices derived from SPOT 5 data are compared with vegetation structure and eddy covariance flux data at 15 dry to wet reclamation and reference sites within the Oil Sands region of Alberta, Canada. This comprehensive analysis examines the linkages between indicators of ecosystem function and change trajectories observed both at the plot level and within pixels. Using SPOT imagery, we find that higher spatial resolution datasets (e.g. 10 m) improves the relationship between vegetation indices and structural measurements compared with interpolated (lower resolution) pixels. The simple ratio (SR) vegetation index performs best when compared with stem density-based indicators (R2 = 0.65; p < 0.00), while the normalised difference vegetation index (NDVI) and soil adjusted vegetation index (SAVI) are most comparable to foliage indicators (leaf area index (LAI) and canopy cover (R2 = 0.52-0.78; p > 0.02). Fluxes (net ecosystem production (NEP) and gross ecosystem production (GEP)) are most related to NDVI and SAVI when these are interpolated to larger 20 m × 20 m pixels (R2 = 0.44-0.50; p < 0.00). As expected, decreased sensitivity of NDVI is problematic for sites with LAI > 3 m2 m-2, making this index more appropriate for newly regenerating reclamation areas. For sites with LAI < 3 m2 m-2, trajectories of vegetation change can be mapped over time and are within 2.7% and 3.3% of annual measured LAI changes observed at most sites. This study demonstrates the utility of remote sensing in combination with field and eddy covariance data for monitoring and scaling of reclaimed and reference site productivity within and beyond the Oil Sands Region of western Canada.

3.
Sci Total Environ ; 601-602: 543-555, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28575832

ABSTRACT

Long term (1999 to 2014) flow and water quality data from a rock drain located at the base of a coal waste rock dump constructed in the Elk Valley, British Columbia was used to characterize the release of three solutes (NO3-, Cl- and SO42-) from the dump and obtain whole dump estimates of net percolation (NP). The concentrations of dump derived solutes in the rock drain water were diluted by snowmelt waters from the adjacent natural watershed during the spring freshet and reached a maximum concentration during the winter baseflow period. Historical peak baseflow concentrations of conservative ions (NO3- and Cl-) increased until 2006/07 after which they decreased. This decrease was attributed to completion of the flushing of the first pore volume of water stored within the dump. The baseflow SO42- concentrations increased proportionally with NO3- and Cl- to 2007, but then continued to slowly increase as NO3- and Cl- concentrations decreased. This was attributed to ongoing production of SO42- due to oxidation of sulfide minerals within the dump. Based on partitioning of the annual volume of water discharged from the rock drain to waste rock effluent (NP) and water entering the rock drain laterally from the natural watershed, the mean NP values were estimated to be 446±50mm/a (area normalized net percolation/year) for the dump and 172±71mm/a for the natural watershed. The difference was attributed to greater rates of recharge in the dump from summer precipitation compared to the natural watershed where rainfall interception and enhanced evapotranspiration will increase water losses. These estimates included water moving through subsurface pathways. However, given the limitations in quantifying these flows the estimated NP rates for both the natural watershed and the waste rock dump are considered to be low, and could be much higher (e.g. ~450mm/a and ~800mm/a).

SELECTION OF CITATIONS
SEARCH DETAIL
...