Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 148
Filter
1.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892126

ABSTRACT

The association between vitamin D deficiency and cardiovascular disease remains a controversial issue. This study aimed to further elucidate the role of vitamin D signaling in the development of left ventricular (LV) hypertrophy and dysfunction. To ablate the vitamin D receptor (VDR) specifically in cardiomyocytes, VDRfl/fl mice were crossed with Mlcv2-Cre mice. To induce LV hypertrophy experimentally by increasing cardiac afterload, transverse aortic constriction (TAC) was employed. Sham or TAC surgery was performed in 4-month-old, male, wild-type, VDRfl/fl, Mlcv2-Cre, and cardiomyocyte-specific VDR knockout (VDRCM-KO) mice. As expected, TAC induced profound LV hypertrophy and dysfunction, evidenced by echocardiography, aortic and cardiac catheterization, cardiac histology, and LV expression profiling 4 weeks post-surgery. Sham-operated mice showed no differences between genotypes. However, TAC VDRCM-KO mice, while having comparable cardiomyocyte size and LV fibrosis to TAC VDRfl/fl controls, exhibited reduced fractional shortening and ejection fraction as measured by echocardiography. Spatial transcriptomics of heart cryosections revealed more pronounced pro-inflammatory and pro-fibrotic gene regulatory networks in the stressed cardiac tissue niches of TAC VDRCM-KO compared to VDRfl/fl mice. Hence, our study supports the notion that vitamin D signaling in cardiomyocytes plays a protective role in the stressed heart.


Subject(s)
Disease Models, Animal , Fibrosis , Gene Regulatory Networks , Hypertrophy, Left Ventricular , Mice, Knockout , Myocytes, Cardiac , Receptors, Calcitriol , Signal Transduction , Vitamin D , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Mice , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/etiology , Hypertrophy, Left Ventricular/pathology , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Vitamin D/metabolism , Male , Inflammation/metabolism , Inflammation/genetics , Inflammation/pathology
2.
J Bone Miner Res ; 39(2): 150-160, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38477776

ABSTRACT

Skeletal stem and progenitor cells (SSPCs) are crucial for bone development, homeostasis, and repair. SSPCs are considered to reside in a rather hypoxic niche in the bone, but distinct SSPC niches have been described in different skeletal regions, and they likely differ in oxygen and nutrient availability. Currently it remains unknown whether the different SSPC sources have a comparable metabolic profile and respond in a similar manner to hypoxia. In this study, we show that cell proliferation of all SSPCs was increased in hypoxia, suggesting that SSPCs can indeed function in a hypoxic niche in vivo. In addition, low oxygen tension increased glucose consumption and lactate production, but affected pyruvate metabolism cell-specifically. Hypoxia decreased tricarboxylic acid (TCA) cycle anaplerosis and altered glucose entry into the TCA cycle from pyruvate dehydrogenase to pyruvate carboxylase and/or malic enzyme. Finally, a switch from glutamine oxidation to reductive carboxylation was observed in hypoxia, as well as cell-specific adaptations in the metabolism of other amino acids. Collectively, our findings show that SSPCs from different skeletal locations proliferate adequately in hypoxia by rewiring glucose and amino acid metabolism in a cell-specific manner.


Skeletal stem and progenitor cells provide a lifelong cell source for bone-forming osteoblasts and these cells reside in unique microenvironments in different regions of the bone, often characterized by low oxygen levels. It was still unknown whether these regional differences resulted in diverse metabolic profiles. In this study, we show that all types of skeletal stem and progenitor cells can proliferate in low oxygen levels by adapting their metabolism of glucose and amino acids, but they differ in how they modify pyruvate metabolism.


Subject(s)
Glucose , Glutamine , Pyruvic Acid , Stem Cells , Glucose/metabolism , Glutamine/metabolism , Animals , Pyruvic Acid/metabolism , Stem Cells/metabolism , Cell Proliferation , Cell Hypoxia , Mice , Bone and Bones/metabolism , Citric Acid Cycle
3.
Nat Rev Endocrinol ; 20(7): 399-413, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38499689

ABSTRACT

Bone development and bone remodelling during adult life are highly anabolic processes requiring an adequate supply of oxygen and nutrients. Bone-forming osteoblasts and bone-resorbing osteoclasts interact closely to preserve bone mass and architecture and are often located close to blood vessels. Chondrocytes within the developing growth plate ensure that bone lengthening occurs before puberty, but these cells function in an avascular environment. With ageing, numerous bone marrow adipocytes appear, often with negative effects on bone properties. Many studies have now indicated that skeletal cells have specific metabolic profiles that correspond to the nutritional microenvironment and their stage-specific functions. These metabolic networks provide not only skeletal cells with sufficient energy, but also biosynthetic intermediates that are necessary for proliferation and extracellular matrix synthesis. Moreover, these metabolic pathways control redox homeostasis to avoid oxidative stress and safeguard cell survival. Finally, several intracellular metabolites regulate the activity of epigenetic enzymes and thus control the fate and function of skeletal cells. The metabolic profile of skeletal cells therefore not only reflects their cellular state, but can also drive cellular activity. Insight into skeletal cell metabolism will thus not only advance our understanding of skeletal development and homeostasis, but also of skeletal disorders, such as osteoarthritis, diabetic bone disease and bone malignancies.


Subject(s)
Chondrocytes , Osteoblasts , Humans , Animals , Osteoblasts/metabolism , Osteoblasts/physiology , Chondrocytes/metabolism , Chondrocytes/physiology , Bone and Bones/metabolism , Osteoclasts/metabolism , Osteoclasts/physiology , Bone Remodeling/physiology , Bone Development/physiology , Cell Differentiation/physiology , Homeostasis/physiology , Adipocytes/metabolism , Adipocytes/physiology
4.
Front Endocrinol (Lausanne) ; 15: 1310466, 2024.
Article in English | MEDLINE | ID: mdl-38352710

ABSTRACT

Introduction: Due to the relatively long life span of rodent models, in order to expediate the identification of novel therapeutics of age related diseases, mouse models of accelerated aging have been developed. In this study we examined skeletal changes in the male and female Klotho mutant (kl/kl) mice and in male and female chronically aged mice to determine whether the accelerated aging bone phenotype of the kl/kl mouse reflects changes in skeletal architecture that occur with chronological aging. Methods: 2, 6 and 20-23 month old C57BL/6 mice were obtained from the National Institute of Aging aged rodent colony and wildtype and kl/kl mice were generated as previously described by M. Kuro-o. Microcomputed tomography analysis was performed ex vivo to examine trabecular and cortical parameters from the proximal metaphyseal and mid-diaphyseal areas, respectively. Serum calcium and phosphate were analyzed using a colorimetric assay. The expression of duodenal Trpv6, which codes for TRPV6, a vitamin D regulated epithelial calcium channel whose expression reflects intestinal calcium absorptive efficiency, was analyzed by quantitative real-time PCR. Results and discussion: Trabecular bone volume (BV/TV) and trabecular number decreased continuously with age in males and females. In contrast to aging mice, an increase in trabecular bone volume and trabecular number was observed in both male and female kl/kl mice. Cortical thickness decreased with advancing age and also decreased in male and female kl/kl mice. Serum calcium and phosphate levels were significantly increased in kl/kl mice but did not change with age. Aging resulted in a decline in Trpv6 expression. In the kl/kl mice duodenal Trpv6 was significantly increased. Our findings reflect differences in bone architecture as well as differences in calcium and phosphate homeostasis and expression of Trpv6 between the kl/kl mutant mouse model of accelerated aging and chronological aging. Although the Klotho deficient mouse has provided a new understanding of the regulation of mineral homeostasis and bone metabolism, our findings suggest that changes in bone architecture in the kl/kl mouse reflect in part systemic disturbances that differ from pathophysiological changes that occur with age including dysregulation of calcium homeostasis that contributes to age related bone loss.


Subject(s)
Calcium , Glucuronidase , Animals , Female , Male , Mice , Aging/genetics , Glucuronidase/genetics , Glucuronidase/metabolism , Mice, Inbred C57BL , Phenotype , Phosphates , X-Ray Microtomography
5.
Nat Metab ; 6(1): 141-152, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38200114

ABSTRACT

Bone-resorbing osteoclasts are vital for postnatal bone health, as increased differentiation or activity results in skeletal pathologies such as osteoporosis. The metabolism of mature osteoclasts differs from their progenitor cells, but whether the observed metabolic changes are secondary to the altered cell state or actively drive the process of cell differentiation is unknown. Here, we show that transient activation of the serine synthesis pathway (SSP) is essential for osteoclastogenesis, as deletion of the rate-limiting enzyme phosphoglycerate dehydrogenase in osteoclast progenitors impairs their differentiation and results in increased bone mass. In addition, pharmacological phosphoglycerate dehydrogenase inhibition abrogated bone loss in a mouse model of postmenopausal osteoporosis by blocking bone resorption. Mechanistically, SSP-derived α-ketoglutarate is necessary for histone demethylases that remove repressive histone methylation marks at the nuclear factor of activated T cells, cytoplasmic 1 (Nfatc1) gene locus, thereby inducing NFATc1 expression and consequent osteoclast maturation. Taken together, this study reveals a metabolic-epigenetic coupling mechanism that directs osteoclast differentiation and suggests that the SSP can be therapeutically targeted to prevent osteoporotic bone loss.


Subject(s)
Epigenesis, Genetic , NFATC Transcription Factors , Osteoclasts , Animals , Mice , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Phosphoglycerate Dehydrogenase/genetics , Serine/genetics , Serine/metabolism
6.
Nature ; 621(7979): 481-482, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37704844

Subject(s)
Neoplasms , Stem Cells , Humans
7.
Front Endocrinol (Lausanne) ; 14: 1223021, 2023.
Article in English | MEDLINE | ID: mdl-37600714

ABSTRACT

Introduction: Neuropilin 2 (NRP2) mediates the effects of class 3 semaphorins and vascular endothelial growth factor and is implicated in axonal guidance and angiogenesis. Moreover, NRP2 expression is suggested to be involved in the regulation of bone homeostasis. Indeed, osteoblasts and osteoclasts express NRP2 and male and female global Nrp2 knockout mice have a reduced bone mass accompanied by reduced osteoblast and increased osteoclast counts. Methods: We first examined the in vitro effect of the calciotropic hormone 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on Nrp2 transcription in osteoblasts. We next generated mice with a conditional deletion of Nrp2 in the osteoblast cell lineage under control of the paired related homeobox 1 promoter and mice with a conditional Nrp2 knockdown in osteoclasts under control of the Lysozyme promoter. Mice were examined under basal conditions or after treatment with either the bone anabolic vitamin D3 analog WY 1048 or with 1,25(OH)2D3. Results and discussion: We show that Nrp2 expression is induced by 1,25(OH)2D3 in osteoblasts and is associated with enrichment of the vitamin D receptor in an intronic region of the Nrp2 gene. In male mice, conditional deletion of Nrp2 in osteoblast precursors and mature osteoblasts recapitulated the bone phenotype of global Nrp2 knockout mice, with a reduced cortical cross-sectional tissue area and lower trabecular bone content. However, female mice with reduced osteoblastic Nrp2 expression display a reduced cross-sectional tissue area but have a normal trabecular bone mass. Treatment with the vitamin D3 analog WY 1048 (0.4 µg/kg/d, 14 days, ip) resulted in a similar increase in bone mass in both genotypes and genders. Deleting Nrp2 from the osteoclast lineage did not result in a bone phenotype, even though in vitro osteoclastogenesis of hematopoietic cells derived from mutant mice was significantly increased. Moreover, treatment with a high dose of 1,25(OH)2D3 (0.5 µg/kg/d, 6 days, ip), to induce osteoclast-mediated bone resorption, resulted in a similar reduction in trabecular and cortical bone mass. In conclusion, osteoblastic Nrp2 expression is suggested to regulate bone homeostasis in a sex-specific manner.


Subject(s)
Cancellous Bone , Neuropilin-2 , Osteoblasts , Animals , Female , Male , Mice , Cholecalciferol , Cross-Sectional Studies , Neuropilin-2/genetics , Vascular Endothelial Growth Factor A , Calcitriol
8.
J Bone Miner Res ; 38(10): 1497-1508, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37222072

ABSTRACT

Transgender youth increasingly present at pediatric gender services. Some of them receive long-term puberty suppression with gonadotropin-releasing hormone analogues (GnRHa) before starting gender-affirming hormones (GAH). The impact of GnRHa use started in early puberty on bone composition and bone mass accrual is unexplored. It is furthermore unclear whether subsequent GAH fully restore GnRHa effects and whether the timing of GAH introduction matters. To answer these questions, we developed a mouse model mimicking the clinical strategy applied in trans boys. Prepubertal 4-week-old female mice were treated with GnRHa alone or with GnRHa supplemented with testosterone (T) from 6 weeks (early puberty) or 8 weeks (late puberty) onward. Outcomes were analyzed at 16 weeks and compared with untreated mice of both sexes. GnRHa markedly increased total body fat mass, decreased lean body mass, and had a modest negative impact on grip strength. Both early and late T administration shaped body composition to adult male levels, whereas grip strength was restored to female values. GnRHa-treated animals showed lower trabecular bone volume and reduced cortical bone mass and strength. These changes were reversed by T to female levels (cortical bone mass and strength) irrespective of the time of administration or even fully up to adult male control values (trabecular parameters) in case of earlier T start. The lower bone mass in GnRHa-treated mice was associated with increased bone marrow adiposity, also reversed by T. In conclusion, prolonged GnRHa use started in prepubertal female mice modifies body composition toward more fat and less lean mass and impairs bone mass acquisition and strength. Subsequent T administration counteracts GnRHa impact on these parameters, shaping body composition and trabecular parameters to male values while restoring cortical bone architecture and strength up to female but not male control levels. These findings could help guide clinical strategies in transgender care. © 2023 American Society for Bone and Mineral Research (ASBMR).

9.
Bone Res ; 11(1): 7, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36650133

ABSTRACT

Osteocytes act within a hypoxic environment to control key steps in bone formation. FGF23, a critical phosphate-regulating hormone, is stimulated by low oxygen/iron in acute and chronic diseases, however the molecular mechanisms directing this process remain unclear. Our goal was to identify the osteocyte factors responsible for FGF23 production driven by changes in oxygen/iron utilization. Hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHI) which stabilize HIF transcription factors, increased Fgf23 in normal mice, as well as in osteocyte-like cells; in mice with conditional osteocyte Fgf23 deletion, circulating iFGF23 was suppressed. An inducible MSC cell line ('MPC2') underwent FG-4592 treatment and ATACseq/RNAseq, and demonstrated that differentiated osteocytes significantly increased HIF genomic accessibility versus progenitor cells. Integrative genomics also revealed increased prolyl hydroxylase Egln1 (Phd2) chromatin accessibility and expression, which was positively associated with osteocyte differentiation. In mice with chronic kidney disease (CKD), Phd1-3 enzymes were suppressed, consistent with FGF23 upregulation in this model. Conditional loss of Phd2 from osteocytes in vivo resulted in upregulated Fgf23, in line with our findings that the MPC2 cell line lacking Phd2 (CRISPR Phd2-KO cells) constitutively activated Fgf23 that was abolished by HIF1α blockade. In vitro, Phd2-KO cells lost iron-mediated suppression of Fgf23 and this activity was not compensated for by Phd1 or -3. In sum, osteocytes become adapted to oxygen/iron sensing during differentiation and are directly sensitive to bioavailable iron. Further, Phd2 is a critical mediator of osteocyte FGF23 production, thus our collective studies may provide new therapeutic targets for skeletal diseases involving disturbed oxygen/iron sensing.

10.
Bone Rep ; 19: 101719, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38163016
11.
Bone Rep ; 17: 101620, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36120644

ABSTRACT

Amino acid metabolism regulates essential cellular functions, not only by fueling protein synthesis, but also by supporting the biogenesis of nucleotides, redox factors and lipids. Amino acids are also involved in tricarboxylic acid cycle anaplerosis, epigenetic modifications, next to synthesis of neurotransmitters and hormones. As such, amino acids contribute to a broad range of cellular processes such as proliferation, matrix synthesis and intercellular communication, which are all critical for skeletal cell functioning. Here we summarize recent work elucidating how amino acid metabolism supports and regulates skeletal cell function during bone growth and homeostasis, as well as during skeletal disease. The most extensively studied amino acid is glutamine, and osteoblasts and chondrocytes rely heavily on this non-essential amino acid during for their functioning and differentiation. Regulated by lineage-specific transcription factors such as SOX9 and osteoanabolic agents such as parathyroid hormone or WNT, glutamine metabolism has a wide range of metabolic roles, as it fuels anabolic processes by producing nucleotides and non-essential amino acids, maintains redox balance by generating the antioxidant glutathione and regulates cell-specific gene expression via epigenetic mechanisms. We also describe how other amino acids affect skeletal cell functions, although further work is needed to fully understand their effect. The increasing number of studies using stable isotope labelling in several skeletal cell types at various stages of differentiation, together with conditional inactivation of amino acid transporters or enzymes in mouse models, will allow us to obtain a more complete picture of amino acid metabolism in skeletal cells.

12.
Front Endocrinol (Lausanne) ; 13: 930358, 2022.
Article in English | MEDLINE | ID: mdl-35979436

ABSTRACT

Skeletal stem and progenitor cells (SSPCs) constitute a reservoir of bone-forming cells necessary for bone development, modeling and remodeling, as well as for fracture healing. Recent advances in tools to identify and isolate SSPCs have revealed that cells with multipotent properties are present not only in neonatal bone, but also in adult bone marrow and periosteum. The long bone metaphysis and endosteum have been proposed as an additional SSPC niche, although in vitro approaches to study their cellular and molecular characteristics are still limited. Here, we describe a comprehensive procedure to isolate and culture SSPCs derived from the metaphysis and endosteum of young-adult mice. Based on flow cytometry analysis of known SSPC markers, we found the presence of putative multipotent SSPCs, similar to neonatal bone tissue. In vitro, metaphyseal/endosteal SSPCs possess self-renewing capacity, and their multipotency is underscored by the ability to differentiate into the osteogenic and adipogenic lineage, while chondrogenic potential is limited. Expansion of metaphyseal/endosteal SSPCs under low oxygen conditions increases their proliferation capacity, while progenitor properties are maintained, likely reflecting their hypoxic niche in vivo. Collectively, we propose a validated isolation and culture protocol to study metaphyseal/endosteal SSPC biology in vitro.


Subject(s)
Bone and Bones , Osteogenesis , Animals , Cell Differentiation , Fracture Healing , Mice , Stem Cells
13.
Cell Rep ; 40(4): 111105, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35905715

ABSTRACT

A functional electron transport chain (ETC) is crucial for supporting bioenergetics and biosynthesis. Accordingly, ETC inhibition decreases proliferation in cancer cells but does not seem to impair stem cell proliferation. However, it remains unclear how stem cells metabolically adapt. In this study, we show that pharmacological inhibition of complex III of the ETC in skeletal stem and progenitor cells induces glycolysis side pathways and reroutes the tricarboxylic acid (TCA) cycle to regenerate NAD+ and preserve cell proliferation. These metabolic changes also culminate in increased succinate and 2-hydroxyglutarate levels that inhibit Ten-eleven translocation (TET) DNA demethylase activity, thereby preserving self-renewal and multilineage potential. Mechanistically, mitochondrial malate dehydrogenase and reverse succinate dehydrogenase activity proved to be essential for the metabolic rewiring in response to ETC inhibition. Together, these data show that the metabolic plasticity of skeletal stem and progenitor cells allows them to bypass ETC blockade and preserve their self-renewal.


Subject(s)
Citric Acid Cycle , Mitochondria , Cell Proliferation , Energy Metabolism/physiology , Mitochondria/metabolism , Respiration
14.
Bone Res ; 10(1): 14, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35165259

ABSTRACT

The majority of the mammalian skeleton is formed through endochondral ossification starting from a cartilaginous template. Cartilage cells, or chondrocytes, survive, proliferate and synthesize extracellular matrix in an avascular environment, but the metabolic requirements for these anabolic processes are not fully understood. Here, using metabolomics analysis and genetic in vivo models, we show that maintaining intracellular serine homeostasis is essential for chondrocyte function. De novo serine synthesis through phosphoglycerate dehydrogenase (PHGDH)-mediated glucose metabolism generates nucleotides that are necessary for chondrocyte proliferation and long bone growth. On the other hand, dietary serine is less crucial during endochondral bone formation, as serine-starved chondrocytes compensate by inducing PHGDH-mediated serine synthesis. Mechanistically, this metabolic flexibility requires ATF4, a transcriptional regulator of amino acid metabolism and stress responses. We demonstrate that both serine deprivation and PHGDH inactivation enhance ATF4 signaling to stimulate de novo serine synthesis and serine uptake, respectively, and thereby prevent intracellular serine depletion and chondrocyte dysfunction. A similar metabolic adaptability between serine uptake and de novo synthesis is observed in the cartilage callus during fracture repair. Together, the results of this study reveal a critical role for PHGDH-dependent serine synthesis in maintaining intracellular serine levels under physiological and serine-limited conditions, as adequate serine levels are necessary to support chondrocyte proliferation during endochondral ossification.

15.
Bone Rep ; 16: 101172, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35198658

ABSTRACT

Bone microarchitecture is an important component of bone quality and disturbances may reduce bone strength and resistance to trauma. Kidney transplant recipients have an excess risk of fractures, and bone loss affecting both trabecular and cortical bone compartments have been demonstrated after kidney transplantation. The primary aim of this study was to investigate the impact of kidney transplantation on trabecular and cortical bone microarchitecture, assessed by histomorphometry and micro computed tomography (µCT). Iliac crest bone biopsies, analyzed by bone histomorphometry and µCT, were performed at time of kidney transplantation and 12 months post-transplantation in an unselected cohort of 30 patients. Biochemical markers of mineral metabolism and bone turnover were measured at both time-points. At 12 months post-transplantation, bone turnover was low in 5 (17%) and normal in 25 (83%) patients. By histomorphometry, bone remodeling normalized, with decreases in eroded perimeters (4.0 to 2.1%, p = 0.02) and number of patients with marrow fibrosis (41 to 0%, p < 0.001). By µCT, trabecular thickness (134 to 125 µM, p = 0.003) decreased slightly. Other parameters of bone volume and microarchitecture, including cortical thickness (729 to 713 µm, p = 0.73) and porosity (10.2 to 9.5%, p = 0.15), remained stable. We conclude that kidney transplantation with current immunosuppressive protocols has a limited impact on bone microarchitecture.

16.
JBMR Plus ; 5(12): e10577, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34950832

ABSTRACT

1,25(OH)2D3, the biologically active form of vitamin D3, is a major regulator of mineral and bone homeostasis and exerts its actions through binding to the vitamin D receptor (VDR), a ligand-activated transcription factor that can directly modulate gene expression in vitamin D-target tissues such as the intestine, kidney, and bone. Inactivating VDR mutations or vitamin D deficiency during development results in rickets, hypocalcemia, secondary hyperparathyroidism, and hypophosphatemia, pointing to the critical role of 1,25(OH)2D3-induced signaling in the maintenance of mineral homeostasis and skeletal health. 1,25(OH)2D3 is a potent stimulator of VDR-mediated intestinal calcium absorption, thus increasing the availability of calcium required for proper bone mineralization. However, when intestinal calcium absorption is impaired, renal calcium reabsorption is increased and calcium is mobilized from the bone to preserve normocalcemia. Multiple cell types within bone express the VDR, thereby allowing 1,25(OH)2D3 to directly affect bone homeostasis. In this review, we will discuss different transgenic mouse models with either Vdr deletion or overexpression in chondrocytes, osteoblasts, osteocytes, or osteoclasts to delineate the direct effects of 1,25(OH)2D3 on bone homeostasis. We will address the bone cell type-specific effects of 1,25(OH)2D3 in conditions of a positive calcium balance, where the amount of (re)absorbed calcium equals or exceeds fecal and renal calcium losses, as well as during a negative calcium balance, due to selective Vdr knockdown in the intestine or triggered by a low calcium diet. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

17.
EMBO Rep ; 22(12): e52764, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34661369

ABSTRACT

Whereas dimerization of the DNA-binding domain of the androgen receptor (AR) plays an evident role in recognizing bipartite response elements, the contribution of the dimerization of the ligand-binding domain (LBD) to the correct functioning of the AR remains unclear. Here, we describe a mouse model with disrupted dimerization of the AR LBD (ARLmon/Y ). The disruptive effect of the mutation is demonstrated by the feminized phenotype, absence of male accessory sex glands, and strongly affected spermatogenesis, despite high circulating levels of testosterone. Testosterone replacement studies in orchidectomized mice demonstrate that androgen-regulated transcriptomes in ARLmon/Y mice are completely lost. The mutated AR still translocates to the nucleus and binds chromatin, but does not bind to specific AR binding sites. In vitro studies reveal that the mutation in the LBD dimer interface also affects other AR functions such as DNA binding, ligand binding, and co-regulator binding. In conclusion, LBD dimerization is crucial for the development of AR-dependent tissues through its role in transcriptional regulation in vivo. Our findings identify AR LBD dimerization as a possible target for AR inhibition.


Subject(s)
Receptors, Androgen , Animals , Binding Sites/genetics , Dimerization , Ligands , Male , Mice , Receptors, Androgen/chemistry , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Transcriptional Activation
18.
J Endocrinol ; 251(3): 207-222, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34612843

ABSTRACT

Vitamin D is important for gonadal function in rodents, and improvement of vitamin D status in men with low sperm counts increases live birth rate. Vitamin D is a regulator of transcellular calcium transport in the intestine and kidney and may influence the dramatic changes in the luminal calcium concentration in epididymis. Here, we show spatial expression in the male reproductive tract of vitamin D receptor (VDR)-regulated factors involved in calcium transport: transient receptor potential vanilloid 5/6 , sodium/calcium exchanger 1, plasma membrane calcium ATPase 1, calbindin D9k, calcium-sensing receptor (CaSR), and parathyroid hormone-related peptide (PTHrP) in mouse and human testis and epididymis. Testicular Casr expression was lower in Vdr ablated mice compared with controls. Moreover, expression levels of Casr and Pthrp were strongly correlated in both testis and epididymis and Pthrp was suppressed by 1,25(OH)2D3 in a spermatogonial cell line. The expression of CaSR in epididymis may be of greater importance than in the gonad in mice as germ cell-specific Casr deficient mice had no major reproductive phenotype, and coincubation with a CaSR-agonist had no effect on human sperm-oocyte binding. In humans, seminal calcium concentration between 5 and 10 mM was associated with a higher fraction of motile and morphologically normal sperm cells, and the seminal calcium concentration was not associated with serum calcium levels. In conclusion, VDR regulates CaSR and PTHrP, and both factors may be involved in the regulation of calcium transport in the male reproductive tract with possible implications for sperm function and storage.


Subject(s)
Calcium/metabolism , Epididymis/metabolism , Receptors, Calcitriol/metabolism , Receptors, Calcium-Sensing/metabolism , Testis/metabolism , Animals , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Humans , Infertility, Male/metabolism , Male , Mice , Mice, Knockout , Parathyroid Hormone-Related Protein/genetics , Parathyroid Hormone-Related Protein/metabolism , Plasma Membrane Calcium-Transporting ATPases/genetics , Plasma Membrane Calcium-Transporting ATPases/metabolism , Receptors, Calcium-Sensing/genetics , S100 Calcium Binding Protein G/genetics , S100 Calcium Binding Protein G/metabolism , Semen , Sodium-Calcium Exchanger/genetics , Sodium-Calcium Exchanger/metabolism , Sperm-Ovum Interactions , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
19.
Nat Metab ; 3(1): 11-20, 2021 01.
Article in English | MEDLINE | ID: mdl-33398192

ABSTRACT

The skeleton is diverse in its functions, which include mechanical support, movement, blood cell production, mineral storage and endocrine regulation. This multifaceted role is achieved through an interplay of osteoblasts, chondrocytes, bone marrow adipocytes and stromal cells, all generated from skeletal stem cells. Emerging evidence shows the importance of cellular metabolism in the molecular control of the skeletal system. The different skeletal cell types not only have distinct metabolic demands relating to their particular functions but also are affected by microenvironmental constraints. Specific metabolites control skeletal stem cell maintenance, direct lineage allocation and mediate cellular communication. Here, we discuss recent findings on the roles of cellular metabolism in determining skeletal stem cell fate, coordinating osteoblast and chondrocyte function, and organizing stromal support of haematopoiesis. We also consider metabolic dysregulation in skeletal ageing and degenerative diseases, and provide an outlook on how the field may evolve in the coming years.


Subject(s)
Bone Diseases/physiopathology , Bone and Bones/cytology , Animals , Bone Marrow Cells , Bone and Bones/physiology , Bone and Bones/physiopathology , Cell Communication , Cell Lineage , Cellular Senescence , Humans , Osteoblasts/metabolism , Stem Cells/metabolism
20.
Neurosurgery ; 88(3): 674-685, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33269399

ABSTRACT

BACKGROUND: Cerebral vasospasm (CVS) is a frequent complication after subarachnoid hemorrhage (SAH), with no sufficient therapy and a complex pathophysiology. OBJECTIVE: To explore the vitamin D system as a potential treatment for CVS. METHODS: 25-vitamin D3 levels tested between 2007 and 2015 and data of SAH patients admitted during the months with a peak vs nadir of VitD3 values were analyzed, retrospectively. We prospectively correlated VitD3 and vasospasm/outcome data in SAH patients admitted in 2017. An experimental mice SAH model and cell culture model were used to investigate the effect of 1,25-dihydroxyvitamin D3 (1,25-VitD3). Additionally, the mediators acting in the VitD mechanism were researched and detected. RESULTS: Based on the retrospective analysis demonstrating an increased frequency of vasospasm in SAH patients during the low vitamin D period in winter, we started basic research experiments. Active 1,25-VitD3 hormone attenuated CVS, neurological deficit, and inflammation after intrathecal blood injection in mice. Deletion of the vitamin D receptor in the endothelium or in myeloid cells decreased the protective 1,25-VitD3 effect. Co-culture experiments of myeloid and endothelial cells with blood confirmed the anti-inflammatory 1,25-VitD3 effect but also revealed an induction of stroma-cell-derived factor 1α (SDF1α), vascular endothelial growth factor, and endothelial nitric oxide synthase by 1,25-VitD3. In mice, SDF1α mimicked the protective effect of 1,25-VitD3 against CVS. From bench to bedside, CVS severity was inversely correlated with vitamin D plasma level, prospectively. Patients with more severe CVS exhibited attenuated expression of SDF1α and 1,25-VitD3-responsive genes on circulating myeloid cells. CONCLUSION: 1,25-VitD3 attenuates CVS after SAH by inducing SDF1α. However, VitD administration should be tested as optional treatment to prevent CVS.


Subject(s)
Calcitriol/administration & dosage , Calcitriol/blood , Seasons , Vasospasm, Intracranial/blood , Vasospasm, Intracranial/drug therapy , Adult , Animals , Female , Follow-Up Studies , Humans , Male , Mice , Middle Aged , Retrospective Studies , Treatment Outcome , Vasospasm, Intracranial/diagnostic imaging , Vitamin D/administration & dosage , Vitamin D/blood , Vitamin D Deficiency/blood , Vitamin D Deficiency/diagnostic imaging , Vitamin D Deficiency/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...