Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Zebrafish ; 21(2): 92-100, 2024 Apr.
Article En | MEDLINE | ID: mdl-38621209

Zebrafish have been used as an education tool for students of all ages and can be used in many learning environments to teach different fields of science. In this study, we focus on the biology of zebrafish. We describe an educational program within a weeklong science camp for students between 12 and 14 years old. The methodology described is based on running annual science camps over an 11-year period. In these camps, students learnt about the developmental stages of zebrafish, as well as general zebrafish biology, husbandry, ecology, behavior, and reproduction. This article describes how to provide students and educators with an educational program to explore, discover, and contribute to the ever-evolving landscape of biological understanding through active and visual learning. We describe the methodology, the evaluation, revisions to our program over time, and future directions for expansion.


Students , Zebrafish , Animals , Humans , Research , Spatial Learning , Teaching
2.
Life Sci Space Res (Amst) ; 41: 127-135, 2024 May.
Article En | MEDLINE | ID: mdl-38670639

Understanding how skeletal tissues respond to microgravity is ever more important with the increased interest in human space travel. Here, we exposed larval Danio rerio at 3.5 dpf to simulated microgravity (SMG) using a 3D mode of rotation in a ground-based experiment and then studied different cellular, molecular, and morphological bone responses both immediately after exposure and one week later. Our results indicate an overall decrease in ossification in several developing skeletal elements immediately after SMG exposure with the exception of the otoliths, however ossification returns to normal levels seven days after exposure. Coincident with the reduction in overall ossification tnfsf11 (RANKL) expression is highly elevated after 24 h of SMG exposure and also returns to normal levels seven days after exposure. We also show that genes associated with osteoblasts are unaffected immediately after SMG exposure. Thus, the observed reduction in ossification is primarily the result of a high level of bone resorption. This study sheds insight into the nuances of how osteoblasts and osteoclasts in the skeleton of a vertebrate organism respond to an external environmental disturbance, in this case simulated microgravity.


Larva , Osteogenesis , Weightlessness Simulation , Zebrafish , Animals , Larva/growth & development , Larva/physiology , Osteoblasts/physiology , Osteoclasts/physiology , RANK Ligand/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Weightlessness/adverse effects
3.
Life Sci Space Res (Amst) ; 38: 39-45, 2023 Aug.
Article En | MEDLINE | ID: mdl-37481306

Zebrafish cultured scales have been used effectively to study cellular and molecular responses of bone cells. In order to expose zebrafish scales to simulated microgravity (SMG) and/or vibration, we first determined via apoptosis staining whether cells of the scale survive in culture for two days and hence, we restricted our analyses to two-day durations. Next, we measured the effects of SMG and vibration on cell death, osteoclast tartrate-resistant acid phosphatase, and osteoblast alkaline phosphatase activity and on the number of Runx2a positive cells. We found that during the SMG treatment, osteoclast tartrate-resistant acid phosphatase activity increased on average, while the number of Runx2a positive cells decreased significantly. In contrast, SMG exposure caused a decrease in osteoblast activity. The vibration treatment showed an increase, on average, in the osteoblast alkaline phosphatase activity. This study demonstrates the effect of SMG and vibration on zebrafish scales and the effects of SMG on bone cells. We also show that zebrafish scales can be used to examine the effects of SMG on bone maintenance.


Osteoclasts , Weightlessness , Animals , Zebrafish , Alkaline Phosphatase , Tartrate-Resistant Acid Phosphatase , Vibration , Osteoblasts
4.
Exp Appl Acarol ; 87(2-3): 253-271, 2022 Jul.
Article En | MEDLINE | ID: mdl-35829939

Interest in research on soft ticks has increased in recent decades, leading to valuable insight into their role as disease vectors. The use of metagenomics-based analyses have helped to elucidate ecological factors involved in pathogen, vector, and host dynamics. To understand the main bacterial assemblages present in Ornithodoros cf. hasei and its mammalian hosts, 84 ticks and 13 blood samples from bat hosts (Chiroptera) were selected, and the 16S rRNA gene V4 region was sequenced in five pools (each one related to each host-tick pairing). Bacterial taxonomic assignment analyses were performed by comparing operational taxonomic units (OTUs) shared between ticks and their host blood. This analysis showed the presence of Proteobacteria (38.8%), Enterobacteriaceae (25%), Firmicutes (12.3%), and Actinobacteria (10.9%) within blood samples, and Rickettsiaceae (39%), Firmicutes (25%), Actinobacteria (13.1%), and Proteobacteria (9%) within ticks. Species related to potentially pathogenic genera were detected in ticks, such as Borrelia sp., Bartonella tamiae, Ehrlichia sp. and Rickettsia-like endosymbiont, and the presence of these organisms was found in all analyzed bat species (Cynomops planirostris, Molossus pretiosus, Noctilio albiventris), and O. cf. hasei. About 41-48.6% of bacterial OTUs (genera and species) were shared between ticks and the blood of bat hosts. Targeted metagenomic screening techniques allowed the detection of tick-associated pathogens for O. cf. hasei and small mammals for the first time, enabling future research on many of these pathogens.


Acari , Argasidae , Chiroptera , Ornithodoros , Rickettsia , Animals , Colombia , RNA, Ribosomal, 16S
5.
Parasitol Res ; 120(2): 383-394, 2021 Feb.
Article En | MEDLINE | ID: mdl-33447885

Ticks are considered the second most important vectors of pathogens worldwide, after mosquitoes. This study provides a systematic review of vector-host relationships between ticks and mammals (domestic and wild) and consolidates information from studies conducted in Colombia between 1911 and 2020. Using the PRISMA method, 71 scientific articles containing records for 51 tick species (Argasidae and Ixodidae) associated with mammals are reported. The existing information on tick-mammal associations in Colombia is scarce, fragmented, or very old. Moreover, 213 specimens were assessed based on morphological and molecular analyses, which allowed confirming eight tick species associated with mammals: Amblyomma calcaratum, Amblyomma dissimile, Amblyomma mixtum, Amblyomma nodosum, Amblyomma ovale, Amblyomma varium, Ixodes luciae, and Ixodes tropicalis. Several tick species are molecularly confirmed for Colombia and nine new relationships between ticks and mammals are reported. This research compiles and confirms important records of tick-mammal associations in Colombia.


Arthropod Vectors/physiology , Mammals/parasitology , Tick Infestations/veterinary , Ticks/physiology , Animals , Argasidae/classification , Argasidae/genetics , Argasidae/physiology , Arthropod Vectors/classification , Arthropod Vectors/genetics , Colombia , Host-Parasite Interactions , Ixodidae/classification , Ixodidae/genetics , Ixodidae/physiology , Tick Infestations/parasitology , Ticks/classification , Ticks/genetics
...