Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 9(9)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37754998

ABSTRACT

Studies of fungal communities through amplicon metagenomics in aquatic environments, particularly in freshwater ecosystems, are still relatively recent. Unfortunately, many of these water bodies are facing growing threats from human expansion, such as effluent discharge from various human activities. As a result, these effluents have the potential to significantly alter the characteristics of water bodies and, subsequently, impact the diversity of their resident microorganisms. In this context, our objective was to investigate whether the fungal community structure varies according to the presence of different anthropic disturbances. We expect (i) the diversity of fungi will be greater and (ii) more specific unique operational taxonomic units (OTUs) related to each ecotonal system will be found compared to other sites of a lagoon. The study was conducted in the Tramandaí Lagoon (subtropical southern Brazil) at four distinct sampling points (estuary, middle of the lagoon, crop field area, and near a residential area where the Tramandaí River flows into the lagoon). As expected, the estuary and residential zones, which are ecotones, exhibited greater fungal diversity and more specific OTUs compared to the middle of the lagoon and crop field area. Moreover, a substantial proportion of fungal taxa could not be identified at the genus level, with many only classified at the phylum level, indicating potential new lineages. These findings underscore our limited understanding of the subtropical freshwater mycobiota.

2.
Genet Mol Biol ; 39(4): 665-673, 2016.
Article in English | MEDLINE | ID: mdl-27560837

ABSTRACT

Apolipoprotein E (apo E) is a human glycoprotein with 299 amino acids, and it is a major component of very low density lipoproteins (VLDL) and a group of high-density lipoproteins (HDL). Phylogenetic studies are important to clarify how various apo E proteins are related in groups of organisms and whether they evolved from a common ancestor. Here, we aimed at performing a phylogenetic study on apo E carrying organisms. We employed a classical and robust method, such as Maximum Likelihood (ML), and compared the results using a more recent approach based on complex networks. Thirty-two apo E amino acid sequences were downloaded from NCBI. A clear separation could be observed among three major groups: mammals, fish and amphibians. The results obtained from ML method, as well as from the constructed networks showed two different groups: one with mammals only (C1) and another with fish (C2), and a single node with the single sequence available for an amphibian. The accordance in results from the different methods shows that the complex networks approach is effective in phylogenetic studies. Furthermore, our results revealed the conservation of apo E among animal groups.

SELECTION OF CITATIONS
SEARCH DETAIL
...