Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Prog ; 39(5): e3354, 2023.
Article in English | MEDLINE | ID: mdl-37161726

ABSTRACT

During the course of biopharmaceutical production, heterologous protein expression in Chinese hamster ovary (CHO) cells imposes a high proteostatic burden that requires cellular adaptation. To mitigate such burden, cells utilize the unfolded protein response (UPR), which increases endoplasmic reticulum (ER) capacity to accommodate elevated rates of protein synthesis and folding. In this study, we show that during production the UPR regulates growth factor signaling to modulate growth and protein synthesis. Specifically, the protein kinase R-like ER kinase (PERK) branch of the UPR is responsible for transcriptional down-regulation of platelet-derived growth factor receptor alpha (PDGFRa) and attenuation of the IRE1-alpha (IRE1a) branch of the UPR. PERK knockout (KO) cell lines displayed reduced growth and viability due to higher rates of apoptosis despite having stabilized PDGFRa levels. Knocking out PERK in an apoptosis impaired (Bax/Bak double KO) antibody-expressing cell line prevented apoptotic cell death and revealed that apoptosis was likely triggered by increased ER stress and reactive oxygen species levels in the PERK KO hosts. Our findings suggest that attenuation of IRE1a and PDGFRa signaling by the PERK branch of the UPR reduces ER protein folding capacity and hence specific productivity of CHO cells in order to mitigate UPR and prevent apoptotic cell death. Last, Bax/Bak/PERK triple KO CHO cell lines displayed 2-3 folds higher specific productivity and titer (up to 8 g/L), suggesting that modulation of PERK signaling during production processes can greatly improve specific productivity in CHO cells.

2.
J Biol Chem ; 298(10): 102454, 2022 10.
Article in English | MEDLINE | ID: mdl-36063993

ABSTRACT

Nonribosomal peptide synthetase heterocyclization (Cy) domains generate biologically important oxazoline/thiazoline groups found in natural products, including pharmaceuticals and virulence factors such as some siderophores. Cy domains catalyze consecutive condensation and cyclodehydration reactions, although the mechanism is unknown. To better understand Cy domain catalysis, here we report the crystal structure of the second Cy domain (Cy2) of yersiniabactin synthetase from the causative agent of the plague, Yersinia pestis. Our high-resolution structure of Cy2 adopts a conformation that enables exploration of interactions with the extended thiazoline-containing cyclodehydration intermediate and the acceptor carrier protein (CP) to which it is tethered. We also report complementary electrostatic interfaces between Cy2 and its donor CP that mediate donor binding. Finally, we explored domain flexibility through normal mode analysis and identified small-molecule fragment-binding sites that may inform future antibiotic design targeting Cy function. Our results suggest how CP binding may influence global Cy conformations, with consequences for active-site remodeling to facilitate the separate condensation and cyclodehydration steps as well as potential inhibitor development.


Subject(s)
Catalytic Domain , Peptide Synthases , Yersinia pestis , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Peptide Synthases/chemistry , Peptide Synthases/metabolism , Siderophores/metabolism , Yersinia pestis/chemistry , Yersinia pestis/enzymology
3.
J Biotechnol ; 320: 44-49, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32526262

ABSTRACT

Chinese hamster ovary (CHO) cells cultured in serum-free chemically-defined media (CDM) are used for manufacturing of therapeutic proteins. Growth factors, such as insulin are commonly utilized in manufacturing platforms to enhance CHO cell viability and growth. Here we report that insulin is degraded in the culture media over time mainly due to the activity of the insulin degrading enzyme (IDE). Insulin degradation was faster in cell lines that released more IDE, which negatively impacted cell growth and in turn, production titers. Deletion of the IDE gene in a representative CHO cell line nearly abolished insulin degradation in seed train and end-of-production media. In summary, our data suggests that selecting cell lines that have lower IDE expression or targeted-deletion of the IDE gene can improve culture viability and growth for insulin-dependent CHO production platforms.


Subject(s)
Culture Media, Serum-Free , Insulin , Insulysin , Animals , Bioreactors , CHO Cells , Cell Culture Techniques , Cell Proliferation/drug effects , Cell Survival/drug effects , Cricetinae , Cricetulus , Culture Media, Serum-Free/chemistry , Culture Media, Serum-Free/metabolism , Gene Knockout Techniques , Insulin/analysis , Insulin/metabolism , Insulin/pharmacology , Insulysin/genetics , Insulysin/metabolism , Insulysin/pharmacology
4.
Cell Rep ; 21(8): 2031-2038, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29166595

ABSTRACT

All pathogens must acquire nutrients from their hosts. The intracellular bacterial pathogen Legionella pneumophila, the etiological agent of Legionnaires' disease, requires host amino acids for growth within cells. The mechanistic target of rapamycin complex 1 (mTORC1) is an evolutionarily conserved master regulator of host amino acid metabolism. Here, we identify two families of translocated L. pneumophila effector proteins that exhibit opposing effects on mTORC1 activity. The Legionella glucosyltransferase (Lgt) effector family activates mTORC1, through inhibition of host translation, whereas the SidE/SdeABC (SidE) effector family acts as mTORC1 inhibitors. We demonstrate that a common activity of both effector families is to inhibit host translation. We propose that the Lgt and SidE families of effectors work in concert to liberate host amino acids for consumption by L. pneumophila.


Subject(s)
Bacterial Proteins/metabolism , Host-Pathogen Interactions/physiology , Legionella pneumophila/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Carrier Proteins/metabolism , Legionnaires' Disease/metabolism , Membrane Proteins/metabolism , Protein Transport/physiology
5.
Science ; 355(6331): 1306-1311, 2017 03 24.
Article in English | MEDLINE | ID: mdl-28336668

ABSTRACT

The mechanistic target of rapamycin complex 1 (mTORC1) protein kinase is a master growth regulator that becomes activated at the lysosome in response to nutrient cues. Here, we identify cholesterol, an essential building block for cellular growth, as a nutrient input that drives mTORC1 recruitment and activation at the lysosomal surface. The lysosomal transmembrane protein, SLC38A9, is required for mTORC1 activation by cholesterol through conserved cholesterol-responsive motifs. Moreover, SLC38A9 enables mTORC1 activation by cholesterol independently from its arginine-sensing function. Conversely, the Niemann-Pick C1 (NPC1) protein, which regulates cholesterol export from the lysosome, binds to SLC38A9 and inhibits mTORC1 signaling through its sterol transport function. Thus, lysosomal cholesterol drives mTORC1 activation and growth signaling through the SLC38A9-NPC1 complex.


Subject(s)
Amino Acid Transport Systems/metabolism , Carrier Proteins/metabolism , Cholesterol/metabolism , Lysosomes/metabolism , Multiprotein Complexes/metabolism , Nuclear Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism , Amino Acid Motifs , Amino Acid Transport Systems/genetics , Animals , Biological Transport , CHO Cells , Cholesterol, HDL/metabolism , Cricetulus , Enzyme Activation , Fibroblasts , HEK293 Cells , Humans , Mechanistic Target of Rapamycin Complex 1 , Mice , Multiprotein Complexes/antagonists & inhibitors , Mutation , Signal Transduction , TOR Serine-Threonine Kinases/antagonists & inhibitors
7.
Nat Genet ; 48(2): 183-8, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26691987

ABSTRACT

Follicular lymphoma is an incurable B cell malignancy characterized by the t(14;18) translocation and mutations affecting the epigenome. Although frequent gene mutations in key signaling pathways, including JAK-STAT, NOTCH and NF-κB, have also been defined, the spectrum of these mutations typically overlaps with that in the closely related diffuse large B cell lymphoma (DLBCL). Using a combination of discovery exome and extended targeted sequencing, we identified recurrent somatic mutations in RRAGC uniquely enriched in patients with follicular lymphoma (17%). More than half of the mutations preferentially co-occurred with mutations in ATP6V1B2 and ATP6AP1, which encode components of the vacuolar H(+)-ATP ATPase (V-ATPase) known to be necessary for amino acid-induced activation of mTORC1. The RagC variants increased raptor binding while rendering mTORC1 signaling resistant to amino acid deprivation. The activating nature of the RRAGC mutations, their existence in the dominant clone and their stability during disease progression support their potential as an excellent candidate for therapeutic targeting.


Subject(s)
Lymphoma, Follicular/genetics , Monomeric GTP-Binding Proteins/genetics , Multiprotein Complexes/genetics , Mutation , TOR Serine-Threonine Kinases/genetics , Amino Acid Sequence , Animals , Humans , Mechanistic Target of Rapamycin Complex 1 , Molecular Sequence Data , Monomeric GTP-Binding Proteins/chemistry , Multiprotein Complexes/chemistry , Sequence Homology, Amino Acid , TOR Serine-Threonine Kinases/chemistry
8.
J Phys Chem B ; 117(27): 8180-8, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23773139

ABSTRACT

This study introduces a new thermodynamic framework for aqueous reaction equilibria that treats water as a coreactant in the development of a general binding equation. The approach features an explicit consideration for the change in hydration that occurs when two solvated surfaces come into contact. As an outcome of this framework, the standard-state free energy of binding is defined by the summation of two terms: the traditional term (-RT ln Ki) plus a desolvation free-energy term that is weighted by the number of complexes formed at equilibrium. The new formalism suggests that the equilibrium ratio, Ki, is not a constant and that the observed concentration dependence of Ki may be used to obtain the molar desolvation energy and the standard-state free energy at infinite dilution. The governing equation is supported by results from isothermal titration calorimetry using the chelation of calcium(II) by EDTA as a model binding reaction. This work may have far-reaching implications for solution thermodynamics, including an explanation for the oft-noted discrepancy between the enthalpy values obtained by calorimetry and those from the van't Hoff approach.


Subject(s)
Models, Chemical , Water/chemistry , Calcium/chemistry , Calorimetry , Edetic Acid/chemistry , Hydrogen-Ion Concentration , Solutions/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...