Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37503232

ABSTRACT

Functional connectivity (FC) is the most popular method for recovering functional networks of brain areas with fMRI. However, because FC is defined as temporal correlations in brain activity, FC networks are confounded by noise and lack a precise functional role. To overcome these limitations, we developed model connectivity (MC). MC is defined as similarities in encoding model weights, which quantify reliable functional activity in terms of interpretable stimulus- or task-related features. To compare FC and MC, both methods were applied to a naturalistic story listening dataset. FC recovered spatially broad networks that are confounded by noise, and that lack a clear role during natural language comprehension. By contrast, MC recovered spatially localized networks that are robust to noise, and that represent distinct categories of semantic concepts. Thus, MC is a powerful data-driven approach for recovering and interpreting the functional networks that support complex cognitive processes.

2.
Neuroimage ; 233: 117975, 2021 06.
Article in English | MEDLINE | ID: mdl-33762217

ABSTRACT

Shared information content is represented across brains in idiosyncratic functional topographies. Hyperalignment addresses these idiosyncrasies by using neural responses to project individuals' brain data into a common model space while maintaining the geometric relationships between distinct patterns of activity or connectivity. The dimensions of this common model capture functional profiles that are shared across individuals such as cortical response profiles collected during a common time-locked stimulus presentation (e.g. movie viewing) or functional connectivity profiles. Hyperalignment can use either response-based or connectivity-based input data to derive transformations that project individuals' neural data from anatomical space into the common model space. Previously, only response or connectivity profiles were used in the derivation of these transformations. In this study, we developed a new hyperalignment algorithm, hybrid hyperalignment, that derives transformations based on both response-based and connectivity-based information. We used three different movie-viewing fMRI datasets to test the performance of our new algorithm. Hybrid hyperalignment derives a single common model space that aligns response-based information as well as or better than response hyperalignment while simultaneously aligning connectivity-based information better than connectivity hyperalignment. These results suggest that a single common information space can encode both shared cortical response and functional connectivity profiles across individuals.


Subject(s)
Brain Mapping/methods , Cerebral Cortex/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Motion Pictures , Nerve Net/diagnostic imaging , Adult , Cerebral Cortex/physiology , Female , Humans , Male , Nerve Net/physiology , Photic Stimulation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...