Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Zebrafish ; 16(1): 135-137, 2019 02.
Article in English | MEDLINE | ID: mdl-30585775

ABSTRACT

Gene editing using clustered regularly interspaced short palindromic repeats (CRISPR) is widely used throughout the zebrafish community for the generation of knockouts and knockins. One of the bottlenecks that exists during the process is the laborious screening of injected embryos for F0 founder fish or CRISPants, weeks after the injection date. In this study we show that the use of fluorescently tagged tracrRNA and sorting for fluorescent embryos as early as the 512-cell stage using stereomicroscope significantly improve yield of fish with successfully CRISPR/Cas9-edited genomes. This is a cost-effective strategy that significantly improves workflow and efficacy in genome editing in particular for less experienced researchers.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Gene Editing/methods , Genome , Heterocyclic Compounds, 4 or More Rings/chemistry , Zebrafish/genetics , Animals , Gene Editing/instrumentation
2.
Dev Dyn ; 247(8): 976-991, 2018 08.
Article in English | MEDLINE | ID: mdl-29806219

ABSTRACT

BACKGROUND: During the final stages of heart development the myocardium grows and becomes vascularized by means of paracrine factors and cell progenitors derived from the epicardium. There is evidence to suggest that retinoic acid (RA), a metabolite of vitamin A, plays an important role in epicardial-based developmental programming. However, the consequences of altered RA-signaling in coronary development have not been systematically investigated. RESULTS: We explored the developmental consequences of altered RA-signaling in late cardiogenic events that involve the epicardium. For this, we used a model of embryonic RA excess based on mouse embryos deficient in the retinaldehyde reductase DHRS3, and a complementary model of embryonic RA deficiency based on pharmacological inhibition of RA synthesis. We found that alterations in embryonic RA signaling led to a thin myocardium and aberrant coronary vessel formation and remodeling. Both excess, and deficient RA-signaling are associated with reductions in ventricular coverage and density of coronary vessels, altered vessel morphology, and impaired recruitment of epicardial-derived mural cells. Using a combined transcriptome and proteome profiling approach, we found that RA treatment of epicardial cells influenced key signaling pathways relevant for cardiac development. CONCLUSIONS: Epicardial RA-signaling plays critical roles in the development of the coronary vasculature needed to support myocardial growth. Developmental Dynamics 247:976-991, 2018. © 2018 Wiley Periodicals, Inc.


Subject(s)
Coronary Vessels/growth & development , Signal Transduction/physiology , Tretinoin/pharmacology , Animals , Coronary Vessels/embryology , Heart/growth & development , Mice , Pericardium/cytology , Proteome , Transcriptome
3.
Endocrine ; 59(2): 419-425, 2018 02.
Article in English | MEDLINE | ID: mdl-29274062

ABSTRACT

PURPOSE: Type 1 and 2 diabetes are characterized by a loss of insulin-producing beta-cells. Current treatments help maintain blood glucose levels but cannot provide a cure. As such, a vital target for the cure of diabetes is a way to restore beta-cell mass. The drug metformin can protect cultured beta-cells/islets from hyperglycemia-induced dysfunction and death. Further, treatment of pregnant mice with metformin results in an enhanced beta-cell fraction in the embryos; however, whether this occurs via a direct effect is unknown. METHODS: We utilized the external embryogenesis of the zebrafish to determine the direct effect of metformin treatment on the pancreas of the developing embryo and following beta-cell ablation. RESULTS: During development metformin did not alter beta-cell or alpha-cell mass but had a small effect to increase delta-cell mass as measured by in situ hybridization. Further metformin significantly increased beta-cell number. Following beta-cell ablation, both glucagon and somatostatin expression were upregulated (>2-fold). Additionally, while metformin showed no effect to alter beta-cell mass or number, somatostatin expression was further increased (>5-fold). CONCLUSIONS: We showed that direct exposure to metformin during embryogenesis does not increase insulin-expressing area but does increase beta-cell number. Further, we identified novel consequences of beta-cell ablation to alter the expression of other pancreatic hormones that were enhanced by metformin. Therefore, this study provides a greater understanding of the beta-cell development/regenerative processes and the effect of metformin, bringing us closer to identifying how to increase beta-cells in humans.


Subject(s)
Embryonic Development/drug effects , Hypoglycemic Agents/pharmacology , Insulin-Secreting Cells/drug effects , Metformin/pharmacology , Animals , Cell Size/drug effects , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Glucagon/genetics , Glucagon/metabolism , Insulin-Secreting Cells/metabolism , Somatostatin/genetics , Somatostatin/metabolism , Zebrafish
4.
Development ; 137(3): 507-18, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20081195

ABSTRACT

Comparative studies of the tetrapod raldh2 (aldh1a2) gene, which encodes a retinoic acid (RA) synthesis enzyme, have led to the identification of a dorsal spinal cord enhancer. Enhancer activity is directed dorsally to the roof plate and dorsal-most (dI1) interneurons through predicted Tcf- and Cdx-homeodomain binding sites and is repressed ventrally via predicted Tgif homeobox and ventral Lim-homeodomain binding sites. Raldh2 and Math1/Cath1 expression in mouse and chicken highlights a novel, transient, endogenous Raldh2 expression domain in dI1 interneurons, which give rise to ascending circuits and intraspinal commissural interneurons, suggesting roles for RA in the ontogeny of spinocerebellar and intraspinal proprioceptive circuits. Consistent with expression of raldh2 in the dorsal interneurons of tetrapods, we also found that raldh2 is expressed in dorsal interneurons throughout the agnathan spinal cord, suggesting ancestral roles for RA signaling in the ontogenesis of intraspinal proprioception.


Subject(s)
Aldehyde Oxidoreductases/physiology , Spinal Cord/physiology , Animals , Binding Sites , Chickens , Conserved Sequence , Evolution, Molecular , Hepatocyte Nuclear Factor 1-alpha , Homeodomain Proteins , Interneurons , LIM-Homeodomain Proteins , Mice , Mice, Transgenic , Repressor Proteins , T Cell Transcription Factor 1 , Transcription Factors , Tretinoin/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...