Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Article in English | MEDLINE | ID: mdl-38849115

ABSTRACT

INTRODUCTION: Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a serious threat to public health. Globally, carbapenemases-producing CRPA isolates mainly belong to 'high-risk' clones; however, the molecular epidemiology of CRPA isolates circulating in Chile are scarce, where this pathogen is the main aetiological agent of ventilator-associated pneumonia. OBJECTIVES: To characterize the phylogenomics and molecular features of ST654 CRPA isolates collected in Chile between 2016 - 2022. METHODS: 89 CRPA isolates collected in different Chilean hospitals from clinical specimens between 2005 and 2022 were analyzed. Antibiotic susceptibility tests and carbapenemases production were carried out on the CRPA ST654 isolates. Also, they were subjected to whole-genome sequencing (WGS) from which in silico analyses were performed. RESULTS: Thirty-four strains (38.2%) belonged to the ST654 'high risk' clone, being the most predominant lineage of the collection. Most of these isolates belonged to a sub-clade including KPC-producers that also clustered with strains from Argentina and the USA, whereas few VIM and NDM co-producers clustered in two different smaller sub-clades. The isolates exhibited a broad resistome encompassing genes mediating resistance to several other clinically relevant drugs. Additionally, all the 34 ST654 isolates were ExoS+ as a virulence factor and associated to the O4-serotype. CONCLUSIONS: Our report represents the most comprehensive phylogenomic study of CRPA 'high risk' clone ST654 to date. Our analyses suggest that this lineage is undergoing a divergent evolutionary path in Chile, since most of the isolates were KPC-producers and were O4-serotype, differing from previous descriptions, which underline the relevance of performing molecular surveillance on this pathogen.

2.
mSystems ; : e0058424, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940600

ABSTRACT

Over almost three decades, average nucleotide identity (ANI) analysis has been instrumental in operationally defining species in bacteria. However, barely any attention has been paid to soundly defining intra-species units employing ANI analyses until recently. Notably, some very recent publications are good steps forward in that direction. The level of granularity provided by these intra-species units will be relevant to understanding the eco-evolutionary dynamics and transmission of bacterial lineages and mobile genetic elements, antibiotic resistance, and virulence genes. These intra-species units will undoubtedly advance the genomic epidemiology of many bacterial pathogens. In the coming years, we anticipate that many studies will implement ANI-based definitions of different intra-species units, such as strains or sequence types, for many different bacterial species.

3.
mSphere ; 9(5): e0016224, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38606973

ABSTRACT

Acinetobacter junii is an opportunistic human and animal pathogen severely understudied. Here, we conducted the largest genomic epidemiological study on this pathogen to date. Our data show that this bacterium has spread globally. Also, we found that some human and non-human isolates are not well differentiated from one another, implying transmission between clinical and non-clinical, non-human settings. Remarkably, human but also some non-human isolates have clinically important antibiotic resistance genes, and some of these genes are located in plasmids. Given these results, we put forward that A. junii should be considered an emerging One Health problem. In this regard, future molecular epidemiological studies about this species will go beyond human isolates and will consider animal-, plant-, and water-associated environments. IMPORTANCE: Acinetobacter baumannii is the most well-known species from the genus Acinetobacter. However, other much less studied Acinetobacter species could be important opportunistic pathogens of animals, plants and humans. Here, we conducted the largest genomic epidemiological study of A. junii, which has been described as a source not only of human but also of animal infections. Our analyses show that this bacterium has spread globally and that, in some instances, human and non-human isolates are not well differentiated. Remarkably, some non-human isolates have important antibiotic resistance genes against important antibiotics used in human medicine. Based on our results, we propose that this pathogen must be considered an issue not only for humans but also for veterinary medicine.


Subject(s)
Acinetobacter Infections , Acinetobacter , Acinetobacter Infections/microbiology , Acinetobacter Infections/epidemiology , Humans , Acinetobacter/genetics , Acinetobacter/drug effects , Acinetobacter/classification , Acinetobacter/isolation & purification , Acinetobacter/pathogenicity , Animals , One Health , Genome, Bacterial , Anti-Bacterial Agents/pharmacology , Molecular Epidemiology , Communicable Diseases, Emerging/microbiology , Communicable Diseases, Emerging/epidemiology , Drug Resistance, Bacterial/genetics , Plasmids/genetics , Genomics
4.
Front Artif Intell ; 7: 1336071, 2024.
Article in English | MEDLINE | ID: mdl-38576460

ABSTRACT

Introduction: Antibiotic-resistant Acinetobacter baumannii is a very important nosocomial pathogen worldwide. Thousands of studies have been conducted about this pathogen. However, there has not been any attempt to use all this information to highlight the research trends concerning this pathogen. Methods: Here we use unsupervised learning and natural language processing (NLP), two areas of Artificial Intelligence, to analyse the most extensive database of articles created (5,500+ articles, from 851 different journals, published over 3 decades). Results: K-means clustering found 113 theme clusters and these were defined with representative terms automatically obtained with topic modelling, summarising different research areas. The biggest clusters, all with over 100 articles, are biased toward multidrug resistance, carbapenem resistance, clinical treatment, and nosocomial infections. However, we also found that some research areas, such as ecology and non-human infections, have received very little attention. This approach allowed us to study research themes over time unveiling those of recent interest, such as the use of Cefiderocol (a recently approved antibiotic) against A. baumannii. Discussion: In a broader context, our results show that unsupervised learning, NLP and topic modelling can be used to describe and analyse the research themes for important infectious diseases. This strategy should be very useful to analyse other ESKAPE pathogens or any other pathogens relevant to Public Health.

5.
mSphere ; 9(3): e0074123, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38440986

ABSTRACT

Acinetobacter baumannii is a Gram-negative, opportunistic pathogen that causes infections in the immunocompromised. With a high incidence of muti-drug resistance, carbapenem-resistant A. baumannii is designated as a priority 1 pathogen by the WHO. The current literature has expertly characterized clinical isolates of A. baumannii. As the challenge of these infections has recently been classified as a One Health issue, we set out to explore the diversity of isolates from human and non-clinical sources, such as agricultural surface water, urban streams, various effluents from wastewater treatment plants, and food (tank milk); and, importantly, these isolates came from a wide geographic distribution. Phylogenomic analysis considering almost 200 isolates showed that our diverse set is well-differentiated from the main international clones of A. baumannii. We discovered novel sequence types in both hospital and non-clinical settings and five strains that overexpress the resistance-nodulation-division efflux pump adeIJK without changes in susceptibility reflected by this overexpression. Furthermore, we detected a bla ADC-79 in a non-human isolate despite its sensitivity to all antibiotics. There was no significant differentiation between the virulence profiles of clinical and non-clinical isolates in the Galleria mellonella insect model of virulence, suggesting that virulence is neither dependent on geographic origin nor isolation source. The detection of antibiotic resistance and virulence genes in non-human strains suggests that these isolates may act as a genetic reservoir for clinical strains. This endorses the notion that in order to combat multi-drug-resistant infection caused by A. baumannii, a One Health approach is required, and a deeper understanding of non-clinical strains must be achieved.IMPORTANCEThe global crisis of antibiotic resistance is a silent one. More and more bacteria are becoming resistant to all antibiotics available for treatment, leaving no options remaining. This includes Acinetobacter baumannii. This Gram-negative, opportunistic pathogen shows a high frequency of multi-drug resistance, and many strains are resistant to the last-resort drugs carbapenem and colistin. Research has focused on strains of clinical origin, but there is a knowledge gap regarding virulence traits, particularly how A. baumannii became the notorious pathogen of today. Antibiotic resistance and virulence genes have been detected in strains from animals and environmental locations such as grass and soil. As such, A. baumannii is a One Health concern, which includes the health of humans, animals, and the environment. Thus, in order to truly combat the antibiotic resistance crisis, we need to understand the antibiotic resistance and virulence gene reservoirs of this pathogen under the One Health continuum.


Subject(s)
Acinetobacter baumannii , Anti-Infective Agents , Animals , Humans , Virulence/genetics , Phylogeny , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial/genetics
6.
Microb Genom ; 10(3)2024 Mar.
Article in English | MEDLINE | ID: mdl-38529901

ABSTRACT

Genome assembly and annotation using short-paired reads is challenging for eukaryotic organisms due to their large size, variable ploidy and large number of repetitive elements. However, the use of single-molecule long reads improves assembly quality (completeness and contiguity), but haplotype duplications still pose assembly challenges. To address the effect of read length on genome assembly quality, gene prediction and annotation, we compared genome assemblers and sequencing technologies with four strains of the ectomycorrhizal fungus Laccaria trichodermophora. By analysing the predicted repertoire of carbohydrate enzymes, we investigated the effects of assembly quality on functional inferences. Libraries were generated using three different sequencing platforms (Illumina Next-Seq, Mi-Seq and PacBio Sequel), and genomes were assembled using single and hybrid assemblies/libraries. Long reads or hybrid assemby resolved the collapsing of repeated regions, but the nuclear heterozygous versions remained unresolved. In dikaryotic fungi, each cell includes two nuclei and each nucleus has differences not only in allelic gene version but also in gene composition and synteny. These heterokaryotic cells produce fragmentation and size overestimation of the genome assembly of each nucleus. Hybrid assembly revealed a wider functional diversity of genomes. Here, several predicted oxidizing activities on glycosyl residues of oligosaccharides and several chitooligosaccharide acetylase activities would have passed unnoticed in short-read assemblies. Also, the size and fragmentation of the genome assembly, in combination with heterozygosity analysis, allowed us to distinguish homokaryotic and heterokaryotic strains isolated from L. trichodermophora fruit bodies.


Subject(s)
Genome , Laccaria , Repetitive Sequences, Nucleic Acid , Sequence Analysis, DNA , Haplotypes
7.
mBio ; : e0252023, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37909743

ABSTRACT

Acinetobacter baumannii is a major public health concern, for which many genomic epidemiology studies have been conducted in the last decade. However, the vast majority of these are local studies focusing on hospitals from one or a few countries. Proper global genomic epidemiology studies are needed if we are to understand the worldwide dissemination of A. baumannii clones. In this regard, a recent study published in mBio is a good step forward. Müller et al. (mBio e2260-23, 2023, https://doi.org/10.1128/mbio.02260-23) sequenced the genomes of 313 carbapenem-resistant A. baumannii isolates from over 100 hospitals in almost 50 countries from Africa, Asia, Europe, and The Americas. With this data set the authors provide an updated view of the global distribution of the major international clones and their carbapenemase genes. Future global genomic epidemiology studies can be enhanced by considering not only human but also non-human isolates, and by considering isolates despite their antibiotic resistance profile.

8.
Microorganisms ; 11(9)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37764160

ABSTRACT

Acinetobacter baumannii is an opportunistic pathogen responsible for healthcare-associated infections (HAIs) and outbreaks. Antimicrobial resistance mechanisms and virulence factors allow it to survive and spread in the hospital environment. However, the molecular mechanisms of these traits and their association with international clones are frequently unknown in low- and middle-income countries. Here, we analyze the phenotype and genotype of seventy-six HAIs and outbreak-causing A. baumannii isolates from a Mexican hospital over ten years, with special attention to the carbapenem resistome and biofilm formation. The isolates belonged to the global international clone (IC) 2 and the Latin America endemic IC5 and were predominantly extensively drug-resistant (XDR). Oxacillinases were identified as a common source of carbapenem resistance. We noted the presence of the blaOXA-143-like family (not previously described in Mexico), the blaOXA-72 and the blaOXA-398 found in both ICs. A low prevalence of efflux pump overexpression activity associated with carbapenem resistance was observed. Finally, strong biofilm formation was found, and significant biofilm-related genes were identified, including bfmRS, csuA/BABCDE, pgaABCD and ompA. This study provides a comprehensive profile of the carbapenem resistome of A. baumannii isolates belonging to the same pulse type, along with their significant biofilm formation capacity. Furthermore, it contributes to a better understanding of their role in the recurrence of infection and the endemicity of these isolates in a Mexican hospital.

9.
Lancet Microbe ; 4(10): e761-e762, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37625430
10.
Access Microbiol ; 5(6)2023.
Article in English | MEDLINE | ID: mdl-37424542

ABSTRACT

Bacteria resistant to antibiotics arguably pose the greatest threat to human health in the twenty-first century. One such bacterium that typifies antibiotic resistance is Acinetobacter baumannii . Frequently, hospital strains of A. baumannii display multidrug resistant (MDR) or extensively drug resistant (XDR) phenotypes, often requiring the use of last resort antibiotics for treatment. In addition to hospital settings, A. baumannii has been isolated from many highly divergent sources including wastewater treatment plant effluent, soil, and agricultural run-off with global distribution. However, such isolates remain poorly characterized. In this study, we characterized a strain of A. baumannii, AB341-IK15, isolated from bulk tank milk in Germany that demonstrated resistance to ceftazidime and intermediate resistance to ceftriaxone and piperacillin/tazobactam. Further genetic characterization identified an ADC-5 cephalosporinase, first incidence in an environmental isolate; and an OXA-408 oxacillinase that may contribute to this phenotype. Interestingly, AB341-IK15 is of a novel sequence type. This research underscores the importance of studying isolates of A. baumannii of non-clinical origin to understand the antibiotic resistance and virulence potential of environmental isolates of A. baumannii as well to understand the diversity of this species.

11.
Microb Genom ; 9(7)2023 Jul.
Article in English | MEDLINE | ID: mdl-37439781

ABSTRACT

Acinetobacter baumannii is one the most worrisome nosocomial pathogens, which has long been considered almost mainly as a hospital-associated bacterium. There have been some studies about animal and environmental isolates over the last decade. However, little effort has been made to determine if this pathogen dwells in the grass. Here, we aim to determine the evolutionary relationships and antibiotic resistance of clones of A. baumannii sampled from grass to the major human international clones and animal clones. Two hundred and forty genomes were considered in total from four different sources for this study. Our core and accessory genomic epidemiology analyses showed that grass isolates cluster in seven groups well differentiated from one another and from the major human and animal isolates. Furthermore, we found new sequence types under both multilocus sequence typing schemes: two under the Pasteur scheme and seven for the Oxford scheme. The grass isolates contained fewer antibiotic-resistance genes and were not resistant to the antibiotics tested. Our results demonstrate that these novel clones appear to have limited antibiotic resistance potential. Given our findings, we propose that genomic epidemiology and surveillance of A. baumannii should go beyond the hospital settings and consider the environment in an explicit One Health approach.


Subject(s)
Acinetobacter baumannii , beta-Lactamases , Animals , Humans , beta-Lactamases/genetics , Acinetobacter baumannii/genetics , Anti-Bacterial Agents/pharmacology , Multilocus Sequence Typing , Clone Cells
12.
FEMS Microbes ; 4: xtad009, 2023.
Article in English | MEDLINE | ID: mdl-37333444

ABSTRACT

Acinetobacter baumannii is a Gram-negative bacterium increasingly implicated in hospital-acquired infections and outbreaks. Effective prevention and control of such infections are commonly challenged by the frequent emergence of multidrug-resistant strains. Here we introduce Ab-web (https://www.acinetobacterbaumannii.no), the first online platform for sharing expertise on A. baumannii. Ab-web is a species-centric knowledge hub, initially with 10 articles organized into two main sections, 'Overview' and 'Topics', and three themes, 'epidemiology', 'antibiotic resistance', and 'virulence'. The 'workspace' section provides a spot for colleagues to collaborate, build, and manage joint projects. Ab-web is a community-driven initiative amenable to constructive feedback and new ideas.

14.
Front Cell Infect Microbiol ; 13: 1278819, 2023.
Article in English | MEDLINE | ID: mdl-38192399

ABSTRACT

Background: Multidrug-resistant Acinetobacter baumannii is a common hospital-acquired pathogen. The increase in antibiotic resistance is commonly due to the acquisition of mobile genetic elements carrying antibiotic resistance genes. To comprehend this, we analyzed the resistome and virulome of Mexican A. baumannii multidrug-resistant isolates. Methods: Six clinical strains of A. baumannii from three Mexican hospitals were sequenced using the Illumina platform, the genomes were assembled with SPAdes and annotated with Prokka. Plasmid SPAdes and MobRecon were used to identify the potential plasmid sequences. Sequence Type (ST) assignation under the MLST Oxford scheme was performed using the PubMLST database. Homologous gene search for known virulent factors was performed using the virulence factor database VFDB and an in silico prediction of the resistome was conducted via the ResFinder databases. Results: The six strains studied belong to different STs and clonal complexes (CC): two strains were ST208 and one was ST369; these two STs belong to the same lineage CC92, which is part of the international clone (IC) 2. Another two strains were ST758 and one was ST1054, both STs belonging to the same lineage CC636, which is within IC5. The resistome analysis of the six strains identified between 7 to 14 antibiotic resistance genes to different families of drugs, including beta-lactams, aminoglycosides, fluoroquinolones and carbapenems. We detected between 1 to 4 plasmids per strain with sizes from 1,800 bp to 111,044 bp. Two strains from hospitals in Mexico City and Guadalajara had a plasmid each of 10,012 bp pAba78r and pAba79f, respectively, which contained the bla OXA-72 gene. The structure of this plasmid showed the same 13 genes in both strains, but 4 of them were inverted in one of the strains. Finally, the six strains contain 49 identical virulence genes related to immune response evasion, quorum-sensing, and secretion systems, among others. Conclusion: Resistance to carbapenems due to pAba78r and pAba79f plasmids in Aba pandrug-resistant strains from different geographic areas of Mexico and different clones was detected. Our results provide further evidence that plasmids are highly relevant for the horizontal transfer of antibiotic resistance genes between different clones of A. baumannii.


Subject(s)
Acinetobacter baumannii , Acinetobacter baumannii/genetics , Mexico , Multilocus Sequence Typing , Anti-Bacterial Agents/pharmacology , Carbapenems , Fluoroquinolones/pharmacology , Plasmids/genetics
16.
mSystems ; 7(4): e0032622, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35880895

ABSTRACT

Phages and prophages are one of the principal modulators of microbial populations. However, much of their diversity is still poorly understood. Here, we extracted 33,624 prophages from 13,713 complete prokaryotic genomes to explore the prophage diversity and their relationships with their host. Our results reveal that prophages were present in 75% of the genomes studied. In addition, Enterobacterales were significantly enriched in prophages. We also found that pathogens are a significant reservoir of prophages. Finally, we determined that the prophage relatedness and the range of genomic hosts were delimited by the evolutionary relationships of their hosts. On a broader level, we got insights into the prophage population, identified in thousands of publicly available prokaryotic genomes, by comparing the prophage distribution and relatedness between them and their hosts. IMPORTANCE Phages and prophages play an essential role in controlling their host populations either by modulating the host abundance or providing them with genes that benefit the host. The constant growth in next-generation sequencing technology has caused the development of powerful computational tools to identify phages and prophages with high precision. Making it possible to explore the prophage populations integrated into host genomes on a large scale. However, it is still a new and under-explored area, and efforts are still required to identify prophage populations to understand their dynamics with their hosts.


Subject(s)
Bacteriophages , Prophages , Prophages/genetics , Host Specificity , Bacteriophages/genetics , Genomics , Genome, Viral/genetics
17.
Microbiol Spectr ; 10(4): e0128922, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35766493

ABSTRACT

Acinetobacter baumannii is a very important human pathogen. Nonetheless, we know very little about nonhuman isolates of A. baumannii. Here, we determine the genomic identity of 15 Scottish cattle and pig isolates, as well as their antibiotic and virulence genetic determinants, and compare them with 148 genomes from the main human clinical international clones. Our results demonstrate that cattle and pig isolates represent novel clones well separated from the major international clones. Furthermore, these new clones showed fewer antibiotic resistance genes and may have fewer virulence genes than human clinical isolates. IMPORTANCE Over the last decades, huge amounts of information have been obtained for clinical isolates of A. baumannii and the clones they belong to. In contrast, very little is known about the genomic identity and the genomic basis for virulence and resistance of animal isolates. To fulfil this gap, we conducted a genomic epidemiology study of 15 Scottish cattle and pig isolates in the context of almost 150 genomes belonging to the main international clones of A. baumannii. Our findings show that these animal isolates represent novel clones clearly different from the major international clones. Furthermore, these new clones are distinct in nature considering both antibiotic resistance and virulence when compared with their human clinical counterparts.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Acinetobacter Infections/drug therapy , Acinetobacter Infections/epidemiology , Acinetobacter Infections/veterinary , Acinetobacter baumannii/genetics , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cattle , Clone Cells , Drug Resistance, Multiple, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Swine , Virulence Factors/genetics , beta-Lactamases/genetics
19.
Microb Genom ; 8(1)2022 01.
Article in English | MEDLINE | ID: mdl-35075990

ABSTRACT

Antimicrobial resistance (AR) is a major global threat to public health. Understanding the population dynamics of AR is critical to restrain and control this issue. However, no study has provided a global picture of the whole resistome of Acinetobacter baumannii, a very important nosocomial pathogen. Here we analyse 1450+ genomes (covering >40 countries and >4 decades) to infer the global population dynamics of the resistome of this species. We show that gene flow and horizontal transfer have driven the dissemination of AR genes in A. baumannii. We found considerable variation in AR gene content across lineages. Although the individual AR gene histories have been affected by recombination, the AR gene content has been shaped by the phylogeny. Furthermore, many AR genes have been transferred to other well-known pathogens, such as Pseudomonas aeruginosa or Klebsiella pneumoniae. Despite using this massive data set, we were not able to sample the whole diversity of AR genes, which suggests that this species has an open resistome. Our results highlight the high mobilization risk of AR genes between important pathogens. On a broader perspective, this study gives a framework for an emerging perspective (resistome-centric) on the genomic epidemiology (and surveillance) of bacterial pathogens.


Subject(s)
Acinetobacter baumannii/classification , Bacterial Proteins/genetics , Computational Biology/methods , Drug Resistance, Multiple, Bacterial , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Databases, Genetic , Gene Flow , Gene Transfer, Horizontal , Phylogeny , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...