Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Commun Biol ; 4(1): 643, 2021 05 31.
Article in English | MEDLINE | ID: mdl-34059783

ABSTRACT

Transmembrane conductance of small uncharged solutes such as glycerol typically occurs through aquaglyceroporins (Glps), which are commonly encoded by multiple genes in metazoan organisms. To date, however, little is known concerning the evolution of Glps in Crustacea or what forces might underly such apparent gene redundancy. Here, we show that Glp evolution in Crustacea is highly divergent, ranging from single copy genes in species of pedunculate barnacles, tadpole shrimps, isopods, amphipods and decapods to up to 10 copies in diplostracan water fleas although with monophyletic origins in each lineage. By contrast the evolution of Glps in Copepoda appears to be polyphyletic, with surprisingly high rates of gene duplication occurring in a genera- and species-specific manner. Based upon functional experiments on the Glps from a parasitic copepod (Lepeophtheirus salmonis), we show that such lineage-level gene duplication and splice variation is coupled with a high rate of neofunctionalization. In the case of L. salmonis, splice variation of a given gene resulted in tissue- or sex-specific expression of the channels, with each variant evolving unique sites for protein kinase C (PKC)- or protein kinase A (PKA)-regulation of intracellular membrane trafficking. The combined data sets thus reveal that mutations favouring a high fidelity control of intracellular trafficking regulation can be a selection force for the evolution and retention of multiple Glps in copepods.


Subject(s)
Aquaglyceroporins/genetics , Crustacea/genetics , Animals , Aquaglyceroporins/metabolism , Biological Evolution , Copepoda/genetics , Crustacea/metabolism , Evolution, Molecular , Genetic Variation/genetics , Multigene Family/genetics , Phylogeny , Protein Isoforms/genetics
2.
J Clin Med ; 9(5)2020 May 13.
Article in English | MEDLINE | ID: mdl-32413985

ABSTRACT

Sporadic inclusion body myositis (sIBM) is an inflammatory myopathy associated, among others, with mitochondrial dysfunction. Similar molecular features are found in Alzheimer's disease (AD) and Type 2 Diabetes Mellitus (T2DM), underlying potential comorbidity. This study aims to evaluate common clinical and molecular hallmarks among sIBM, AD, and T2DM. Comorbidity with AD was assessed in n = 14 sIBM patients by performing neuropsychological and cognitive tests, cranial magnetic resonance imaging, AD cerebrospinal fluid biomarkers (levels of amyloid beta, total tau, and phosphorylated tau at threonine-181), and genetic apolipoprotein E genotyping. In the same sIBM cohort, comorbidity with T2DM was assessed by collecting anthropometric measures and performing an oral glucose tolerance test and insulin determinations. Results were compared to the standard population and other myositis (n = 7 dermatomyositis and n = 7 polymyositis). Mitochondrial contribution into disease was tested by measurement of oxidative/anaerobic and oxidant/antioxidant balances, respiration fluxes, and enzymatic activities in sIBM fibroblasts subjected to different glucose levels. Comorbidity of sIBM with AD was not detected. Clinically, sIBM patients showed signs of misbalanced glucose homeostasis, similar to other myositis. Such misbalance was further confirmed at the molecular level by the metabolic inability of sIBM fibroblasts to adapt to different glucose conditions. Under the standard condition, sIBM fibroblasts showed decreased respiration (0.71 ± 0.08 vs. 1.06 ± 0.04 nmols O2/min; p = 0.024) and increased anaerobic metabolism (5.76 ± 0.52 vs. 3.79 ± 0.35 mM lactate; p = 0.052). Moreover, when glucose conditions were changed, sIBM fibroblasts presented decreased fold change in mitochondrial enzymatic activities (-12.13 ± 21.86 vs. 199.22 ± 62.52 cytochrome c oxidase/citrate synthase ratio; p = 0.017) and increased oxidative stress per mitochondrial activity (203.76 ± 82.77 vs. -69.55 ± 21.00; p = 0.047), underlying scarce metabolic plasticity. These findings do not demonstrate higher prevalence of AD in sIBM patients, but evidences of prediabetogenic conditions were found. Glucose deregulation in myositis suggests the contribution of lifestyle conditions, such as restricted mobility. Additionally, molecular evidences from sIBM fibroblasts confirm that mitochondrial dysfunction may play a role. Monitoring T2DM development and mitochondrial contribution to disease in myositis patients could set a path for novel therapeutic options.

3.
Aging (Albany NY) ; 11(11): 3750-3767, 2019 06 09.
Article in English | MEDLINE | ID: mdl-31180333

ABSTRACT

PRKN encodes an E3-ubiquitin-ligase involved in multiple cell processes including mitochondrial homeostasis and autophagy. Previous studies reported alterations of mitochondrial function in fibroblasts from patients with PRKN mutation-associated Parkinson's disease (PRKN-PD) but have been only conducted in glycolytic conditions, potentially masking mitochondrial alterations. Additionally, autophagy flux studies in this cell model are missing.We analyzed mitochondrial function and autophagy in PRKN-PD skin-fibroblasts (n=7) and controls (n=13) in standard (glucose) and mitochondrial-challenging (galactose) conditions.In glucose, PRKN-PD fibroblasts showed preserved mitochondrial bioenergetics with trends to abnormally enhanced mitochondrial respiration that, accompanied by decreased CI, may account for the increased oxidative stress. In galactose, PRKN-PD fibroblasts exhibited decreased basal/maximal respiration vs. controls and reduced mitochondrial CIV and oxidative stress compared to glucose, suggesting an inefficient mitochondrial oxidative capacity to meet an extra metabolic requirement. PRKN-PD fibroblasts presented decreased autophagic flux with reduction of autophagy substrate and autophagosome synthesis in both conditions.The alterations exhibited under neuron-like oxidative environment (galactose), may be relevant to the disease pathogenesis potentially explaining the increased susceptibility of dopaminergic neurons to undergo degeneration. Abnormal PRKN-PD phenotype supports the usefulness of fibroblasts to model disease and the view of PD as a systemic disease where molecular alterations are present in peripheral tissues.


Subject(s)
Autophagy/genetics , Fibroblasts/metabolism , Mitochondria/metabolism , Parkinson Disease/metabolism , Skin/metabolism , Ubiquitin-Protein Ligases/genetics , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Mitochondria/genetics , Mutation , Neurons/metabolism , Oxidative Stress/physiology , Parkinson Disease/genetics
4.
J Cell Mol Med ; 23(6): 3962-3973, 2019 06.
Article in English | MEDLINE | ID: mdl-30941904

ABSTRACT

Intrauterine growth restriction (IUGR) is an obstetric complication characterised by placental insufficiency and secondary cardiovascular remodelling that can lead to cardiomyopathy in adulthood. Despite its aetiology and potential therapeutics are poorly understood, bioenergetic deficits have been demonstrated in adverse foetal and cardiac development. We aimed to evaluate the role of mitochondria in human pregnancies with IUGR. In a single-site, cross-sectional and observational study, we included placenta and maternal peripheral and neonatal cord blood mononuclear cells (PBMC and CBMC) from 14 IUGR and 22 control pregnancies. The following mitochondrial measurements were assessed: enzymatic activities of mitochondrial respiratory chain (MRC) complexes I, II, IV, I + III and II + III, oxygen consumption (cell and complex I-stimulated respiration), mitochondrial content (citrate synthase [CS] activity and mitochondrial DNA copy number), total ATP levels and lipid peroxidation. Sirtuin3 expression was evaluated as a potential regulator of bioenergetic imbalance. Intrauterine growth restriction placental tissue showed a significant decrease of MRC CI enzymatic activity (P < 0.05) and CI-stimulated oxygen consumption (P < 0.05) accompanied by a significant increase of Sirtuin3/ß-actin protein levels (P < 0.05). Maternal PBMC and neonatal CBMC from IUGR patients presented a not significant decrease in oxygen consumption (cell and CI-stimulated respiration) and MRC enzymatic activities (CII and CIV). Moreover, CS activity was significantly reduced in IUGR new-borns (P < 0.05). Total ATP levels and lipid peroxidation were preserved in all the studied tissues. Altered mitochondrial function of IUGR is especially present at placental and neonatal level, conveying potential targets to modulate obstetric outcome through dietary interventions aimed to regulate Sirtuin3 function.


Subject(s)
Fetal Growth Retardation/metabolism , Heart/physiopathology , Leukocytes, Mononuclear/metabolism , Mitochondria/metabolism , Placenta/metabolism , Sirtuin 3/metabolism , Adult , Citrate (si)-Synthase/metabolism , Cross-Sectional Studies , DNA, Mitochondrial/metabolism , Electron Transport Complex I/metabolism , Electron Transport Complex IV/metabolism , Female , Heart/growth & development , Humans , Lipid Peroxidation , Mitochondria/enzymology , Mitochondria/genetics , Natriuretic Peptide, Brain/blood , Oxygen Consumption , Pregnancy , Sirtuin 3/genetics , Ventricular Remodeling
5.
J Transl Med ; 16(1): 160, 2018 06 08.
Article in English | MEDLINE | ID: mdl-29884186

ABSTRACT

BACKGROUND: Mutations in leucine rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease (PD). Mitochondrial and autophagic dysfunction has been described as etiologic factors in different experimental models of PD. We aimed to study the role of mitochondria and autophagy in LRRK2 G2019S -mutation, and its relationship with the presence of PD-symptoms. METHODS: Fibroblasts from six non-manifesting LRRK2 G2019S -carriers (NM-LRRK2 G2019S ) and seven patients with LRRK2 G2019S -associated PD (PD-LRRK2 G2019S ) were compared to eight healthy controls (C). An exhaustive assessment of mitochondrial performance and autophagy was performed after 24-h exposure to standard (glucose) or mitochondrial-challenging environment (galactose), where mitochondrial and autophagy impairment may be heightened. RESULTS: A similar mitochondrial phenotype of NM-LRRK2 G2019S and controls, except for an early mitochondrial depolarization (54.14% increased, p = 0.04), was shown in glucose. In response to galactose, mitochondrial dynamics of NM-LRRK2 G2019S improved (- 17.54% circularity, p = 0.002 and + 42.53% form factor, p = 0.051), probably to maintain ATP levels over controls. A compromised bioenergetic function was suggested in PD-LRRK2 G2019S when compared to controls in glucose media. An inefficient response to galactose and worsened mitochondrial dynamics (- 37.7% mitochondrial elongation, p = 0.053) was shown, leading to increased oxidative stress. Autophagy initiation (SQTSM/P62) was upregulated in NM-LRRK2 G2019S when compared to controls (glucose + 118.4%, p = 0.014; galactose + 114.44%, p = 0.009,) and autophagosome formation increased in glucose media. Despite of elevated SQSTM1/P62 levels of PD-NM G2019S when compared to controls (glucose + 226.14%, p = 0.04; galactose + 78.5%, p = 0.02), autophagosome formation was deficient in PD-LRRK2 G2019S when compared to NM-LRRK2 G2019S (- 71.26%, p = 0.022). CONCLUSIONS: Enhanced mitochondrial performance of NM-LRRK2 G2019S in mitochondrial-challenging conditions and upregulation of autophagy suggests that an exhaustion of mitochondrial bioenergetic and autophagic reserve, may contribute to the development of PD in LRRK2 G2019S mutation carriers.


Subject(s)
Autophagy , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mitochondria/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Adult , Aged , Female , Heterozygote , Humans , Male , Middle Aged , Mitochondrial Dynamics , Mutation/genetics , Parkinson Disease/epidemiology , Phenotype
6.
Neurobiol Aging ; 65: 206-216, 2018 05.
Article in English | MEDLINE | ID: mdl-29501959

ABSTRACT

Mutations in the parkin gene (PRKN) are the most common cause of autosomal-recessive juvenile Parkinson's disease (PD). PRKN encodes an E3 ubiquitin ligase that is involved in multiple regulatory functions including proteasomal-mediated protein turnover, mitochondrial function, mitophagy, and cell survival. However, the precise molecular events mediated by PRKN mutations in PRKN-associated PD (PRKN-PD) remain unknown. To elucidate the cellular impact of parkin mutations, we performed an RNA sequencing study in skin fibroblasts from PRKN-PD patients carrying different PRKN mutations (n = 4) and genetically unrelated healthy subjects (n = 4). We identified 343 differentially expressed genes in PRKN-PD fibroblasts. Gene ontology and canonical pathway analysis revealed enrichment of differentially expressed genes in processes such as cell adhesion, cell growth, and amino acid and folate metabolism among others. Our findings indicate that PRKN mutations are associated with large global gene expression changes as observed in fibroblasts from PRKN-PD patients and support the view of PD as a systemic disease affecting also non-neural peripheral tissues such as the skin.


Subject(s)
Fibroblasts , Mutation , Parkinson Disease/genetics , Transcriptome , Ubiquitin-Protein Ligases/genetics , Adult , Aged , Amino Acids/metabolism , Cell Adhesion/genetics , Cell Growth Processes/genetics , Cells, Cultured , Child , Female , Fibroblasts/metabolism , Fibroblasts/physiology , Folic Acid/metabolism , Humans , Male , Middle Aged , Sequence Analysis, RNA , Skin/cytology , Ubiquitin-Protein Ligases/physiology
7.
J Antimicrob Chemother ; 72(9): 2578-2586, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28859443

ABSTRACT

Background: HIV infection and HAART trigger genetic and functional mitochondrial alterations leading to cell death and adverse clinical manifestations. Mitochondrial dynamics enable mitochondrial turnover and degradation of damaged mitochondria, which may lead to apoptosis. Objectives: To evaluate markers of mitochondrial dynamics and apoptosis in pregnancies among HIV-infected women on HAART and determine their potential association with obstetric complications. Methods: This controlled, single-site, observational study without intervention included 26 HIV-infected pregnant women on HAART and 18 control pregnancies and their newborns. Maternal PBMCs and neonatal cord blood mononuclear cells (CBMCs) were isolated at the first trimester of gestation and at delivery. The placenta was homogenized at 5% w/v. Mitochondrial dynamics, fusion events [mitofusin 2 (Mfn2)/ß-actin] and fission events [dynamin-related protein 1 (Drp1/ß-actin)] and apoptosis (caspase 3/ß-actin) were assessed by western blot analysis. Results: Obstetric complications were significantly more frequent in pregnancies among HIV-infected women [OR 5.00 (95% CI 1.21-20.70)]. Mfn2/ß-actin levels in PBMCs from controls significantly decreased during pregnancy (202.13 ±â€¯57.45%), whereas cases maintained reduced levels from the first trimester of pregnancy and no differences were observed in CBMCs. Mfn2/ß-actin and Drp1/ß-actin contents significantly decreased in the placenta of cases. Caspase 3/ß-actin levels significantly increased during pregnancy in PBMCs of cases (50.00 ±â€¯7.89%), remaining significantly higher than in controls. No significant differences in caspase 3/ß-actin content of neonatal CBMCs were observed, but there was a slight increased trend in placenta from cases. Conclusions: HIV- and HAART-mediated mitochondrial damage may be enhanced by decreased mitochondrial dynamics and increased apoptosis in maternal and placental compartments but not in the uninfected fetus. However, direct effects on mitochondrial dynamics and implication of apoptosis were not demonstrated in adverse obstetric outcomes.


Subject(s)
Anti-HIV Agents/adverse effects , Antiretroviral Therapy, Highly Active/adverse effects , Apoptosis/drug effects , HIV Infections/drug therapy , Mitochondrial Dynamics/drug effects , Pregnancy Complications, Infectious/drug therapy , Pregnancy Outcome , Adult , Anti-HIV Agents/therapeutic use , Caspase 3/genetics , Female , GTP Phosphohydrolases/genetics , HIV Infections/virology , Humans , Infant, Newborn , Leukocytes, Mononuclear , Mitochondria/drug effects , Mitochondrial Proteins/genetics , Placenta/physiology , Pregnancy , Pregnancy Complications, Infectious/virology
8.
J Acquir Immune Defic Syndr ; 75(4): e113-e119, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28234688

ABSTRACT

OBJECTIVE: To determine whether mitochondrial, oxidative, and apoptotic abnormalities in placenta derived from HIV and combined antiretroviral therapy (cART) containing zidovudine (AZT) could be associated with adverse perinatal outcome. DESIGN: Cross-sectional, controlled, observational study. METHODS: We studied obstetric results and mitochondrial, oxidative, and apoptotic state in placenta of 24 treated HIV-infected and 32 -uninfected pregnant women. We measured mitochondrial DNA (mtDNA) content by quantitative reverse transcriptase-polymerase chain reaction (mtND2/n18SrRNA), oxidative stress by the spectrophotometric quantification of lipid peroxidation and apoptosis by Western blot analysis of active caspase-3 respect to ß-actin content and analysis of the terminal deoxynucleotidyl transferase dUTP nick end labeling. RESULTS: Global adverse perinatal outcome (defined as preterm delivery or/and small newborns for gestational age) was significantly increased in HIV pregnancies [or 6.7 (1.3-33.2); P < 0.05]. mtDNA content in HIV-infected women was significantly depleted (39.20% ± 2.78%) with respect to controls (0.59 ± 0.03 vs. 0.97 ± 0.07; P < 0.001). A significant 29.50% ± 9.14% increase in oxidative stress was found in placentas of HIV-infected women (23.23 ± 1.64 vs. 17.94 ± 1.03; P < 0.01). A trend toward 41.18% ± 29.41% increased apoptosis active caspase-3/ß-actin was found in HIV patients (0.48 ± 0.10 vs. 0.34 ± 0.05; P = not significant), confirmed by transferase dUTP nick end labeling assay. Adverse perinatal outcome did not correlate mitochondrial, oxidative, or apoptotic findings. CONCLUSIONS: Placentas of HIV-infected pregnant women under AZT cART showed evidence of mtDNA depletion, increased oxidative stress levels, and apoptosis suggestive of secondary mitochondrial failure, potential base of associated adverse perinatal outcome. Despite the fact that further demonstration of causality would need new approaches and bigger sample sizes, AZT-sparing cART should be considered in the context of pregnancy.


Subject(s)
Anti-HIV Agents/adverse effects , Antiretroviral Therapy, Highly Active/adverse effects , Apoptosis/drug effects , DNA, Mitochondrial/drug effects , HIV Infections/drug therapy , Maternal-Fetal Exchange/drug effects , Placenta/drug effects , Pregnancy Complications, Infectious/drug therapy , Zidovudine/adverse effects , Adult , Anti-HIV Agents/therapeutic use , Case-Control Studies , Contraindications , Cross-Sectional Studies , Female , Fetal Blood/drug effects , HIV Infections/blood , HIV Infections/complications , Humans , Infant, Newborn , Infant, Small for Gestational Age , Infectious Disease Transmission, Vertical/prevention & control , Oxidative Stress , Pregnancy , Pregnancy Complications, Infectious/blood , Pregnancy Outcome , Prenatal Exposure Delayed Effects , Spain/epidemiology , Zidovudine/therapeutic use
9.
J Transl Med ; 15(1): 29, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28183315

ABSTRACT

BACKGROUND: Metabolic alterations play a role in the development of inflammatory myopathies (IMs). Herein, we have investigated through a multiplex assay whether proteins of energy metabolism could provide biomarkers of IMs. METHODS: A cohort of thirty-two muscle biopsies and forty plasma samples comprising polymyositis (PM), dermatomyositis (DM) and sporadic inclusion body myositis (sIBM) and control donors was interrogated with monoclonal antibodies against proteins of energy metabolism using reverse phase protein microarrays (RPPA). RESULTS: When compared to controls the expression of the proteins is not significantly affected in the muscle of PM patients. However, the expression of ß-actin is significantly increased in DM and sIBM in consistence with muscle and fiber regeneration. Concurrently, the expression of some proteins involved in glucose metabolism displayed a significant reduction in muscle of sIBM suggesting a repression of glycolytic metabolism in these patients. In contrasts to these findings, the expression of the glycolytic pyruvate kinase isoform M2 (PKM2) and of the mitochondrial ATPase Inhibitor Factor 1 (IF1) and Hsp60 were significantly augmented in DM when compared to other IMs in accordance with a metabolic shift prone to cancer development. PKM2 alone or in combination with other biomarkers allowed the discrimination of control and IMs with very high (>95%) sensitivity and specificity. Unfortunately, plasma levels of PKM2 were not significantly altered in DM patients to recommend its use as a non-invasive biomarker of the disease. CONCLUSIONS: Expression of proteins of energy metabolism in muscle enabled discrimination of patients with IMs. RPPA identified the glycolysis promoting PKM2 and IF1 proteins as specific biomarkers of dermatomyositis, providing a biochemical link of this IM with oncogenesis.


Subject(s)
Carcinogenesis/metabolism , Dermatomyositis/metabolism , Mitochondria/metabolism , Proteins/metabolism , Pyruvate Kinase/metabolism , Antibodies/metabolism , Biomarkers/metabolism , Biopsy , Cluster Analysis , Energy Metabolism , Humans , Inflammation/diagnosis , Inflammation/pathology , Muscles/metabolism , Muscles/pathology , Protein Array Analysis , Reproducibility of Results , Subcellular Fractions/metabolism , ATPase Inhibitory Protein
10.
J Cell Mol Med ; 21(1): 26-34, 2017 01.
Article in English | MEDLINE | ID: mdl-27577111

ABSTRACT

To assess the impact of HIV-infection and highly active anti-retroviral treatment in mitochondria and apoptotic activation of caspases during pregnancy and their association with adverse perinatal outcome. Changes of mitochondrial parameters and apoptotic caspase activation in maternal peripheral blood mononuclear cells were compared at first trimester of pregnancy and delivery in 27 HIV-infected and -treated pregnant women versus 24 uninfected pregnant controls. We correlated immunovirological, therapeutic and perinatal outcome with experimental findings: mitochondrial DNA (mtDNA) content, mitochondrial protein synthesis, mitochondrial function and apoptotic caspase activation. The HIV pregnancies showed increased adverse perinatal outcome (OR: 4.81 [1.14-20.16]; P < 0.05) and decreased mtDNA content (42.66 ± 5.94%, P < 0.01) compared to controls, even higher in naïve participants. This depletion caused a correlated decrease in mitochondrial protein synthesis (12.82 ± 5.73%, P < 0.01) and function (20.50 ± 10.14%, P < 0.001), not observed in controls. Along pregnancy, apoptotic caspase-3 activation increased 63.64 ± 45.45% in controls (P < 0.001) and 100.00 ± 47.37% in HIV-pregnancies (P < 0.001), in correlation with longer exposure to nucleoside analogues. HIV-infected women showed increased obstetric problems and declined genetic and functional mitochondrial parameters during pregnancy, especially those firstly exposed to anti-retrovirals. The apoptotic activation of caspases along pregnancy is emphasized in HIV pregnancies promoted by nucleoside analogues. However, we could not demonstrate direct mitochondrial or apoptotic implication in adverse obstetric outcome probably because of the reduced sample size.


Subject(s)
Anti-HIV Agents/adverse effects , Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , Mitochondria/drug effects , Pregnancy Complications, Infectious/chemically induced , Adult , Apoptosis/drug effects , Caspase 3/metabolism , DNA, Mitochondrial/genetics , Female , Humans , Leukocytes, Mononuclear/drug effects , Pregnancy
11.
J Cell Mol Med ; 21(2): 402-409, 2017 02.
Article in English | MEDLINE | ID: mdl-27758070

ABSTRACT

To characterize mitochondrial/apoptotic parameters in chronically human immunodeficiency virus (HIV-1)-infected promonocytic and lymphoid cells which could be further used as therapeutic targets to test pro-mitochondrial or anti-apoptotic strategies as in vitro cell platforms to deal with HIV-infection. Mitochondrial/apoptotic parameters of U1 promonocytic and ACH2 lymphoid cell lines were compared to those of their uninfected U937 and CEM counterparts. Mitochondrial DNA (mtDNA) was quantified by rt-PCR while mitochondrial complex IV (CIV) function was measured by spectrophotometry. Mitochondrial-nuclear encoded subunits II-IV of cytochrome-c-oxidase (COXII-COXIV), respectively, as well as mitochondrial apoptotic events [voltage-dependent-anion-channel-1(VDAC-1)-content and caspase-9 levels] were quantified by western blot, with mitochondrial mass being assessed by spectrophotometry (citrate synthase) and flow cytometry (mitotracker green assay). Mitochondrial membrane potential (JC1-assay) and advanced apoptotic/necrotic events (AnexinV/propidium iodide) were measured by flow cytometry. Significant mtDNA depletion spanning 57.67% (P < 0.01) was found in the U1 promonocytic cells further reflected by a significant 77.43% decrease of mitochondrial CIV activity (P < 0.01). These changes were not significant for the ACH2 lymphoid cell line. COXII and COXIV subunits as well as VDAC-1 and caspase-9 content were sharply decreased in both chronic HIV-1-infected promonocytic and lymphoid cell lines (<0.005 in most cases). In addition, U1 and ACH2 cells showed a trend (moderate in case of ACH2), albeit not significant, to lower levels of depolarized mitochondrial membranes. The present in vitro lymphoid and especially promonocytic HIV model show marked mitochondrial lesion but apoptotic resistance phenotype that has been only partially demonstrated in patients. This model may provide a platform for the characterization of HIV-chronicity, to test novel therapeutic options or to study HIV reservoirs.


Subject(s)
Apoptosis , HIV-1/physiology , Lymphocytes/virology , Mitochondria/metabolism , Models, Biological , Monocytes/virology , Cell Line , DNA, Mitochondrial/genetics , Electron Transport Complex IV/metabolism , Humans , Lymphocytes/metabolism , Monocytes/metabolism , Protein Subunits/metabolism , Voltage-Dependent Anion Channel 1/metabolism
12.
Clin Sci (Lond) ; 130(19): 1741-51, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27413019

ABSTRACT

Sporadic inclusion body myositis (sIBM) is one of the most common myopathies in elderly people. Mitochondrial abnormalities at the histological level are present in these patients. We hypothesize that mitochondrial dysfunction may play a role in disease aetiology. We took the following measurements of muscle and peripheral blood mononuclear cells (PBMCs) from 30 sIBM patients and 38 age- and gender-paired controls: mitochondrial DNA (mtDNA) deletions, amount of mtDNA and mtRNA, mitochondrial protein synthesis, mitochondrial respiratory chain (MRC) complex I and IV enzymatic activity, mitochondrial mass, oxidative stress and mitochondrial dynamics (mitofusin 2 and optic atrophy 1 levels). Depletion of mtDNA was present in muscle from sIBM patients and PBMCs showed deregulated expression of mitochondrial proteins in oxidative phosphorylation. MRC complex IV/citrate synthase activity was significantly decreased in both tissues and mitochondrial dynamics were affected in muscle. Depletion of mtDNA was significantly more severe in patients with mtDNA deletions, which also presented deregulation of mitochondrial fusion proteins. Imbalance in mitochondrial dynamics in muscle was associated with increased mitochondrial genetic disturbances (both depletion and deletions), demonstrating that proper mitochondrial turnover is essential for mitochondrial homoeostasis and muscle function in these patients.


Subject(s)
DNA, Mitochondrial/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Myositis, Inclusion Body/genetics , Myositis, Inclusion Body/metabolism , Aged , Case-Control Studies , Female , Gene Expression Regulation , Humans , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Mitochondria/genetics , Mitochondrial Proteins/genetics , Oxidative Phosphorylation
13.
Mol Med ; 21(1): 817-823, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26552061

ABSTRACT

Sporadic inclusion body myositis (sIBM) is a rare disease that is difficult to diagnose. Muscle biopsy provides three prominent pathological findings: inflammation, mitochondrial abnormalities and fibber degeneration, represented by the accumulation of protein depots constituted by ß-amyloid peptide, among others. We aim to perform a screening in plasma of circulating molecules related to the putative etiopathogenesis of sIBM to determine potential surrogate biomarkers for diagnosis. Plasma from 21 sIBM patients and 20 age- and gender-paired healthy controls were collected and stored at -80°C. An additional population of patients with non-sIBM inflammatory myopathies was also included (nine patients with dermatomyositis and five with polymyositis). Circulating levels of inflammatory cytokines (interleukin [IL]-6 and tumor necrosis factor [TNF]-α), mitochondrial-related molecules (free plasmatic mitochondrial DNA [mtDNA], fibroblast growth factor-21 [FGF-21] and coenzyme-Q10 [CoQ]) and amyloidogenic-related molecules (beta-secretase-1 [BACE-1], presenilin-1 [PS-1], and soluble Aß precursor protein [sAPPß]) were assessed with magnetic bead-based assays, real-time polymerase chain reaction, enzyme-linked immunosorbent assay (ELISA) and high-pressure liquid chromatography (HPLC). Despite remarkable trends toward altered plasmatic expression of inflammatory and mitochondrial molecules (increased IL-6, TNF-α, circulating mtDNA and FGF-21 levels and decreased content in CoQ), only amyloidogenic degenerative markers including BACE-1, PS-1 and sAPPß levels were significantly increased in plasma from sIBM patients compared with controls and other patients with non-sIBM inflammatory myopathies (p < 0.05). Inflammatory, mitochondrial and amyloidogenic degeneration markers are altered in plasma of sIBM patients confirming their etiopathological implication in the disease. Sensitivity and specificity analysis show that BACE-1, PS-1 and sAPPß represent a good predictive noninvasive tool for the diagnosis of sIBM, especially in distinguishing this disease from polymyositis.

14.
Addict Biol ; 21(1): 159-70, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25186090

ABSTRACT

In utero exposure of fetuses to tobacco is associated with reduced birth weight. We hypothesized that this may be due to the toxic effect of carbon monoxide (CO) from tobacco, which has previously been described to damage mitochondria in non-pregnant adult smokers. Maternal peripheral blood mononuclear cells (PBMCs), newborn cord blood mononuclear cells (CBMCs) and placenta were collected from 30 smoking pregnant women and their newborns and classified as moderate and severe smoking groups, and compared to a cohort of 21 non-smoking controls. A biomarker for tobacco consumption (cotinine) was assessed by ELISA (enzyme-linked immunosorbent assay). The following parameters were measured in all tissues: mitochondrial chain complex IV [cytochrome c oxidase (COX)] activity by spectrophotometry, mitochondrial DNA levels by reverse transcription polymerase chain reaction, oxidative stress by spectrophotometric lipid peroxide quantification, mitochondrial mass through citrate synthase spectrophotometric activity and apoptosis by Western blot parallelly confirmed by TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labelling) assay in placenta. Newborns from smoking pregnant women presented reduced birth weight by 10.75 percent. Materno-fetal mitochondrial and apoptotic PBMC and CBMC parameters showed altered and correlated values regarding COX activity, mitochondrial DNA, oxidative stress and apoptosis. Placenta partially compensated this dysfunction by increasing mitochondrial number; even so ratios of oxidative stress and apoptosis were increased. A CO-induced mitotoxic and apoptotic fingerprint is present in smoking pregnant women and their newborn, with a lack of filtering effect from the placenta. Tobacco consumption correlated with a reduction in birth weight and mitochondrial and apoptotic impairment, suggesting that both could be the cause of the reduced birth weight in smoking pregnant women.


Subject(s)
Apoptosis , Birth Weight/physiology , DNA, Mitochondrial/metabolism , Electron Transport Complex IV/metabolism , Mitochondria/metabolism , Oxidative Stress , Placenta/metabolism , Smoking/metabolism , Adult , Blotting, Western , Carbon Monoxide , Case-Control Studies , Cotinine/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Humans , In Situ Nick-End Labeling , Infant, Low Birth Weight , Infant, Newborn , Leukocytes, Mononuclear/metabolism , Lipid Peroxides/metabolism , Male , Pregnancy , Reverse Transcriptase Polymerase Chain Reaction , Spectrophotometry
SELECTION OF CITATIONS
SEARCH DETAIL
...