Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 127
1.
Heliyon ; 10(6): e27974, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38515669

Traditionally, public health surveillance relied on individual-level data but recently wastewater-based epidemiology (WBE) for the detection of infectious diseases including COVID-19 became a valuable tool in the public health arsenal. Here, we use WBE to follow the course of the COVID-19 pandemic in Rochester, Minnesota (population 121,395 at the 2020 census), from February 2021 to December 2022. We monitored the impact of SARS-CoV-2 infections on public health by comparing three sets of data: quantitative measurements of viral RNA in wastewater as an unbiased reporter of virus level in the community, positive results of viral RNA or antigen tests from nasal swabs reflecting community reporting, and hospitalization data. From February 2021 to August 2022 viral RNA levels in wastewater were closely correlated with the oscillating course of COVID-19 case and hospitalization numbers. However, from September 2022 cases remained low and hospitalization numbers dropped, whereas viral RNA levels in wastewater continued to oscillate. The low reported cases may reflect virulence reduction combined with abated inclination to report, and the divergence of virus levels in wastewater from reported cases may reflect COVID-19 shifting from pandemic to endemic. WBE, which also detects asymptomatic infections, can provide an early warning of impending cases, and offers crucial insights during pandemic waves and in the transition to the endemic phase.

2.
PLoS Pathog ; 19(12): e1011817, 2023 Dec.
Article En | MEDLINE | ID: mdl-38127684

It is increasingly appreciated that pathogens can spread as infectious units constituted by multiple, genetically diverse genomes, also called collective infectious units or genome collectives. However, genetic characterization of the spatial dynamics of collective infectious units in animal hosts is demanding, and it is rarely feasible in humans. Measles virus (MeV), whose spread in lymphatic tissues and airway epithelia relies on collective infectious units, can, in rare cases, cause subacute sclerosing panencephalitis (SSPE), a lethal human brain disease. In different SSPE cases, MeV acquisition of brain tropism has been attributed to mutations affecting either the fusion or the matrix protein, or both, but the overarching mechanism driving brain adaptation is not understood. Here we analyzed MeV RNA from several spatially distinct brain regions of an individual who succumbed to SSPE. Surprisingly, we identified two major MeV genome subpopulations present at variable frequencies in all 15 brain specimens examined. Both genome types accumulated mutations like those shown to favor receptor-independent cell-cell spread in other SSPE cases. Most infected cells carried both genome types, suggesting the possibility of genetic complementation. We cannot definitively chart the history of the spread of this virus in the brain, but several observations suggest that mutant genomes generated in the frontal cortex moved outwards as a collective and diversified. During diversification, mutations affecting the cytoplasmic tails of both viral envelope proteins emerged and fluctuated in frequency across genetic backgrounds, suggesting convergent and potentially frequency-dependent evolution for modulation of fusogenicity. We propose that a collective infectious unit drove MeV pathogenesis in this brain. Re-examination of published data suggests that similar processes may have occurred in other SSPE cases. Our studies provide a primer for analyses of the evolution of collective infectious units of other pathogens that cause lethal disease in humans.


Measles , Subacute Sclerosing Panencephalitis , Animals , Humans , Subacute Sclerosing Panencephalitis/genetics , Subacute Sclerosing Panencephalitis/pathology , Measles virus/genetics , Measles virus/metabolism , Measles/genetics , Measles/metabolism , Brain/pathology , Tropism/genetics
3.
Microbiol Spectr ; : e0136123, 2023 Sep 19.
Article En | MEDLINE | ID: mdl-37724882

Amplification of measles virus (MeV) in human airway epithelia may contribute to its extremely high contagious nature. We use well-differentiated primary cultures of human airway epithelial cells (HAE) to model ex vivo how MeV spreads in human airways. In HAE, MeV spreads cell-to-cell for 3-5 days, but then, infectious center growth is arrested. What stops MeV spread in HAE is not understood, but interferon (IFN) is known to slow MeV spread in other in vitro and in vivo models. Here, we assessed the role of type I and type III IFN in arresting MeV spread in HAE. The addition of IFN-ß or IFN-λ1 to the medium of infected HAE slowed MeV infectious center growth, but when IFN receptor signaling was blocked, infectious center size was not affected. In contrast, blocking type-I IFN receptor signaling enhanced respiratory syncytial virus spread. HAE were also infected with MeV mutants defective for the V protein. The V protein has been demonstrated to interact with both MDA5 and STAT2 to inhibit activation of innate immunity; however, innate immune reactions were unexpectedly muted against the V-defective MeV in HAE. Minimal innate immunity activation was confirmed by deep sequencing, quantitative RT-PCR, and single-cell RNA-seq analyses of the transcription of IFN and IFN-stimulated genes. We conclude that in HAE, IFN-signaling can contribute to slowing infectious center growth; however, IFN-independent processes are most important for limiting cell-to-cell spread. IMPORTANCE Fundamental biological questions remain about the highly contagious measles virus (MeV). MeV amplifies within airway epithelial cells before spreading to the next host. This final step likely contributes to the ability of MeV to spread host-to-host. Over the course of 3-5 days post-infection of airway epithelial cells, MeV spreads directly cell-to-cell and forms infectious centers. Infectious center formation is unique to MeV. In this study, we show that interferon (IFN) signaling does not explain why MeV cell-to-cell spread is ultimately impeded within the cell layer. The ability of MeV to spread cell-to-cell in airway cells without appreciable IFN induction may contribute to its highly contagious nature. This study contributes to the understanding of a significant global health concern by demonstrating that infectious center formation occurs independent of the simplest explanation for limiting viral transmission within a host.

4.
PLoS One ; 18(3): e0282151, 2023.
Article En | MEDLINE | ID: mdl-36888581

BACKGROUND: SARS-CoV-2-mediated COVID-19 may cause sudden cardiac death (SCD). Factors contributing to this increased risk of potentially fatal arrhythmias include thrombosis, exaggerated immune response, and treatment with QT-prolonging drugs. However, the intrinsic arrhythmic potential of direct SARS-CoV-2 infection of the heart remains unknown. OBJECTIVE: To assess the cellular and electrophysiological effects of direct SARS-CoV-2 infection of the heart using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). METHODS: hiPSC-CMs were transfected with recombinant SARS-CoV-2 spike protein (CoV-2 S) or CoV-2 S fused to a modified Emerald fluorescence protein (CoV-2 S-mEm). Cell morphology was visualized using immunofluorescence microscopy. Action potential duration (APD) and cellular arrhythmias were measured by whole cell patch-clamp. Calcium handling was assessed using the Fluo-4 Ca2+ indicator. RESULTS: Transfection of hiPSC-CMs with CoV-2 S-mEm produced multinucleated giant cells (syncytia) displaying increased cellular capacitance (75±7 pF, n = 10 vs. 26±3 pF, n = 10; P<0.0001) consistent with increased cell size. The APD90 was prolonged significantly from 419±26 ms (n = 10) in untransfected hiPSC-CMs to 590±67 ms (n = 10; P<0.05) in CoV-2 S-mEm-transfected hiPSC-CMs. CoV-2 S-induced syncytia displayed delayed afterdepolarizations, erratic beating frequency, and calcium handling abnormalities including calcium sparks, large "tsunami"-like waves, and increased calcium transient amplitude. After furin protease inhibitor treatment or mutating the CoV-2 S furin cleavage site, cell-cell fusion was no longer evident and Ca2+ handling returned to normal. CONCLUSION: The SARS-CoV-2 spike protein can directly perturb both the cardiomyocyte's repolarization reserve and intracellular calcium handling that may confer the intrinsic, mechanistic substrate for the increased risk of SCD observed during this COVID-19 pandemic.


COVID-19 , Induced Pluripotent Stem Cells , Long QT Syndrome , Humans , Myocytes, Cardiac/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Calcium/metabolism , Furin/metabolism , Long QT Syndrome/metabolism , Pandemics , COVID-19/metabolism , SARS-CoV-2/metabolism , Arrhythmias, Cardiac/metabolism , Action Potentials/physiology
6.
Lancet Digit Health ; 4(9): e632-e645, 2022 09.
Article En | MEDLINE | ID: mdl-35835712

BACKGROUND: COVID-19 is a multi-system disorder with high variability in clinical outcomes among patients who are admitted to hospital. Although some cytokines such as interleukin (IL)-6 are believed to be associated with severity, there are no early biomarkers that can reliably predict patients who are more likely to have adverse outcomes. Thus, it is crucial to discover predictive markers of serious complications. METHODS: In this retrospective cohort study, we analysed samples from 455 participants with COVID-19 who had had a positive SARS-CoV-2 RT-PCR result between April 14, 2020, and Dec 1, 2020 and who had visited one of three Mayo Clinic sites in the USA (Minnesota, Arizona, or Florida) in the same period. These participants were assigned to three subgroups depending on disease severity as defined by the WHO ordinal scale of clinical improvement (outpatient, severe, or critical). Our control cohort comprised of 182 anonymised age-matched and sex-matched plasma samples that were available from the Mayo Clinic Biorepository and banked before the COVID-19 pandemic. We did a deep profiling of circulatory cytokines and other proteins, lipids, and metabolites from both cohorts. Most patient samples were collected before, or around the time of, hospital admission, representing ideal samples for predictive biomarker discovery. We used proximity extension assays to quantify cytokines and circulatory proteins and tandem mass spectrometry to measure lipids and metabolites. Biomarker discovery was done by applying an AutoGluon-tabular classifier to a multiomics dataset, producing a stacked ensemble of cutting-edge machine learning algorithms. Global proteomics and glycoproteomics on a subset of patient samples with matched pre-COVID-19 plasma samples was also done. FINDINGS: We quantified 1463 cytokines and circulatory proteins, along with 902 lipids and 1018 metabolites. By developing a machine-learning-based prediction model, a set of 102 biomarkers, which predicted severe and clinical COVID-19 outcomes better than the traditional set of cytokines, were discovered. These predictive biomarkers included several novel cytokines and other proteins, lipids, and metabolites. For example, altered amounts of C-type lectin domain family 6 member A (CLEC6A), ether phosphatidylethanolamine (P-18:1/18:1), and 2-hydroxydecanoate, as reported here, have not previously been associated with severity in COVID-19. Patient samples with matched pre-COVID-19 plasma samples showed similar trends in muti-omics signatures along with differences in glycoproteomics profile. INTERPRETATION: A multiomic molecular signature in the plasma of patients with COVID-19 before being admitted to hospital can be exploited to predict a more severe course of disease. Machine learning approaches can be applied to highly complex and multidimensional profiling data to reveal novel signatures of clinical use. The absence of validation in an independent cohort remains a major limitation of the study. FUNDING: Eric and Wendy Schmidt.


COVID-19 , Biomarkers , COVID-19/diagnosis , Cohort Studies , Cytokines , Humans , Lipidomics/methods , Lipids , Metabolomics/methods , Pandemics , Prognosis , Proteomics/methods , Retrospective Studies , SARS-CoV-2
7.
Viruses ; 14(1)2022 01 12.
Article En | MEDLINE | ID: mdl-35062341

Particles of many paramyxoviruses include small amounts of proteins with a molecular weight of about 20 kDa. These proteins, termed "C", are basic, have low amino acid homology and some secondary structure conservation. C proteins are encoded in alternative reading frames of the phosphoprotein gene. Some viruses express nested sets of C proteins that exert their functions in different locations: In the nucleus, they interfere with cellular transcription factors that elicit innate immune responses; in the cytoplasm, they associate with viral ribonucleocapsids and control polymerase processivity and orderly replication, thereby minimizing the activation of innate immunity. In addition, certain C proteins can directly bind to, and interfere with the function of, several cytoplasmic proteins required for interferon induction, interferon signaling and inflammation. Some C proteins are also required for efficient virus particle assembly and budding. C-deficient viruses can be grown in certain transformed cell lines but are not pathogenic in natural hosts. C proteins affect the same host functions as other phosphoprotein gene-encoded proteins named V but use different strategies for this purpose. Multiple independent systems to counteract host defenses may ensure efficient immune evasion and facilitate virus adaptation to new hosts and tissue environments.


Immunity, Innate/immunology , Paramyxoviridae Infections/immunology , Paramyxovirinae/physiology , Phosphoproteins/immunology , Viral Proteins/immunology , Virus Replication/physiology , Animals , Defective Interfering Viruses , Genome, Viral , Humans , Immune Evasion , Inflammasomes , Open Reading Frames , Paramyxovirinae/genetics , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phylogeny , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Assembly
8.
J Virol ; 95(24): e0136821, 2021 11 23.
Article En | MEDLINE | ID: mdl-34613786

Severe cardiovascular complications can occur in coronavirus disease of 2019 (COVID-19) patients. Cardiac damage is attributed mostly to the aberrant host response to acute respiratory infection. However, direct infection of cardiac tissue by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also occurs. We examined here the cardiac tropism of SARS-CoV-2 in spontaneously beating human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). These cardiomyocytes express the angiotensin-converting enzyme 2 (ACE2) receptor but not the transmembrane protease serine 2 (TMPRSS2) that mediates spike protein cleavage in the lungs. Nevertheless, SARS-CoV-2 infection of hiPSC-CMs was prolific; viral transcripts accounted for about 88% of total mRNA. In the cytoplasm of infected hiPSC-CMs, smooth-walled exocytic vesicles contained numerous 65- to 90-nm particles with canonical ribonucleocapsid structures, and virus-like particles with knob-like spikes covered the cell surface. To better understand how SARS-CoV-2 spreads in hiPSC-CMs, we engineered an expression vector coding for the spike protein with a monomeric emerald-green fluorescent protein fused to its cytoplasmic tail (S-mEm). Proteolytic processing of S-mEm and the parental spike were equivalent. Live cell imaging tracked spread of S-mEm cell-to-cell and documented formation of syncytia. A cell-permeable, peptide-based molecule that blocks the catalytic site of furin and furin-like proteases abolished cell fusion. A spike mutant with the single amino acid change R682S that disrupts the multibasic furin cleavage motif was fusion inactive. Thus, SARS-CoV-2 replicates efficiently in hiPSC-CMs and furin, and/or furin-like-protease activation of its spike protein is required for fusion-based cytopathology. This hiPSC-CM platform enables target-based drug discovery in cardiac COVID-19. IMPORTANCE Cardiac complications frequently observed in COVID-19 patients are tentatively attributed to systemic inflammation and thrombosis, but viral replication has occasionally been confirmed in cardiac tissue autopsy materials. We developed an in vitro model of SARS-CoV-2 spread in myocardium using induced pluripotent stem cell-derived cardiomyocytes. In these highly differentiated cells, viral transcription levels exceeded those previously documented in permissive transformed cell lines. To better understand the mechanisms of SARS-CoV-2 spread, we expressed a fluorescent version of its spike protein that allowed us to characterize a fusion-based cytopathic effect. A mutant of the spike protein with a single amino acid mutation in the furin/furin-like protease cleavage site lost cytopathic function. Of note, the fusion activities of the spike protein of other coronaviruses correlated with the level of cardiovascular complications observed in infections with the respective viruses. These data indicate that SARS-CoV-2 may cause cardiac damage by fusing cardiomyocytes.


COVID-19/virology , Myocytes, Cardiac/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Animals , Cathepsin B/metabolism , Cell Fusion , Chlorocebus aethiops , Embryonic Stem Cells/metabolism , Exocytosis , Humans , Induced Pluripotent Stem Cells/metabolism , Microscopy, Confocal , Serine Endopeptidases/metabolism , Vero Cells , Viral Proteins/metabolism , Virus Internalization , Virus Replication
9.
PLoS Pathog ; 17(8): e1009458, 2021 08.
Article En | MEDLINE | ID: mdl-34383863

Measles virus (MeV) is the most contagious human virus. Unlike most respiratory viruses, MeV does not directly infect epithelial cells upon entry in a new host. MeV traverses the epithelium within immune cells that carry it to lymphatic organs where amplification occurs. Infected immune cells then synchronously deliver large amounts of virus to the airways. However, our understanding of MeV replication in airway epithelia is limited. To model it, we use well-differentiated primary cultures of human airway epithelial cells (HAE) from lung donors. In HAE, MeV spreads directly cell-to-cell forming infectious centers that grow for ~3-5 days, are stable for a few days, and then disappear. Transepithelial electrical resistance remains intact during the entire course of HAE infection, thus we hypothesized that MeV infectious centers may dislodge while epithelial function is preserved. After documenting by confocal microscopy that infectious centers progressively detach from HAE, we recovered apical washes and separated cell-associated from cell-free virus by centrifugation. Virus titers were about 10 times higher in the cell-associated fraction than in the supernatant. In dislodged infectious centers, ciliary beating persisted, and apoptotic markers were not readily detected, suggesting that they retain functional metabolism. Cell-associated MeV infected primary human monocyte-derived macrophages, which models the first stage of infection in a new host. Single-cell RNA sequencing identified wound healing, cell growth, and cell differentiation as biological processes relevant for infectious center dislodging. 5-ethynyl-2'-deoxyuridine (EdU) staining located proliferating cells underneath infectious centers. Thus, cells located below infectious centers divide and differentiate to repair the dislodged infected epithelial patch. As an extension of these studies, we postulate that expulsion of infectious centers through coughing and sneezing could contribute to MeV's strikingly high reproductive number by allowing the virus to survive longer in the environment and by delivering a high infectious dose to the next host.


Epithelial Cells/virology , Macrophages/virology , Measles virus/pathogenicity , Measles/virology , Respiratory System/virology , Virus Internalization , Virus Replication , Cells, Cultured , Epithelial Cells/metabolism , Humans , Macrophages/metabolism , Measles/genetics , Measles/metabolism , RNA-Seq , Respiratory System/metabolism , Single-Cell Analysis , Transcriptome
10.
Antiviral Res ; 193: 105084, 2021 09.
Article En | MEDLINE | ID: mdl-34077807

Nipah virus (NiV) and Hendra virus (HeV) are highly pathogenic, bat-borne paramyxoviruses in the genus Henipavirus that cause severe and often fatal acute respiratory and/or neurologic diseases in humans and livestock. There are currently no approved antiviral therapeutics or vaccines for use in humans to treat or prevent NiV or HeV infection. To facilitate development of henipavirus antivirals, a high-throughput screening (HTS) platform was developed based on a well-characterized recombinant version of the nonpathogenic Henipavirus, Cedar virus (rCedV). Using reverse genetics, a rCedV encoding firefly luciferase (rCedV-Luc) was rescued and its utility evaluated for high-throughput antiviral compound screening. The luciferase reporter gene signal kinetics of rCedV-Luc in different human cell lines was characterized and validated as an authentic real-time measure of viral growth. The rCedV-Luc platform was optimized as an HTS assay that demonstrated high sensitivity with robust Z' scores, excellent signal-to-background ratios and coefficients of variation. Eight candidate compounds that inhibited rCedV replication were identified for additional validation and demonstrated that 4 compounds inhibited authentic NiV-Bangladesh replication. Further evaluation of 2 of the 4 validated compounds in a 9-point dose response titration demonstrated potent antiviral activity against NiV-Bangladesh and HeV, with minimal cytotoxicity. This rCedV reporter can serve as a surrogate yet authentic BSL-2 henipavirus platform that will dramatically accelerate drug candidate identification in the development of anti-henipavirus therapies.


Antiviral Agents/pharmacology , Henipavirus Infections/drug therapy , Henipavirus/drug effects , High-Throughput Screening Assays , Viral Envelope Proteins/metabolism , Cell Line , Genes, Reporter , Henipavirus/physiology , Henipavirus Infections/virology , Humans , Luciferases/genetics , Luciferases/metabolism , Recombination, Genetic , Viral Envelope Proteins/genetics , Virus Internalization/drug effects , Virus Replication/drug effects
11.
Hypertension ; 76(5): 1350-1367, 2020 11.
Article En | MEDLINE | ID: mdl-32981369

The coronavirus disease 2019 (COVID-19) pandemic is associated with significant morbidity and mortality throughout the world, predominantly due to lung and cardiovascular injury. The virus responsible for COVID-19-severe acute respiratory syndrome coronavirus 2-gains entry into host cells via ACE2 (angiotensin-converting enzyme 2). ACE2 is a primary enzyme within the key counter-regulatory pathway of the renin-angiotensin system (RAS), which acts to oppose the actions of Ang (angiotensin) II by generating Ang-(1-7) to reduce inflammation and fibrosis and mitigate end organ damage. As COVID-19 spans multiple organ systems linked to the cardiovascular system, it is imperative to understand clearly how severe acute respiratory syndrome coronavirus 2 may affect the multifaceted RAS. In addition, recognition of the role of ACE2 and the RAS in COVID-19 has renewed interest in its role in the pathophysiology of cardiovascular disease in general. We provide researchers with a framework of best practices in basic and clinical research to interrogate the RAS using appropriate methodology, especially those who are relatively new to the field. This is crucial, as there are many limitations inherent in investigating the RAS in experimental models and in humans. We discuss sound methodological approaches to quantifying enzyme content and activity (ACE, ACE2), peptides (Ang II, Ang-[1-7]), and receptors (types 1 and 2 Ang II receptors, Mas receptor). Our goal is to ensure appropriate research methodology for investigations of the RAS in patients with severe acute respiratory syndrome coronavirus 2 and COVID-19 to ensure optimal rigor and reproducibility and appropriate interpretation of results from these investigations.


Coronavirus Infections/epidemiology , Hypertension/epidemiology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/epidemiology , Renin-Angiotensin System/physiology , Severe Acute Respiratory Syndrome/metabolism , Angiotensin-Converting Enzyme 2 , Blood Pressure Determination/methods , COVID-19 , China/epidemiology , Female , Humans , Hypertension/physiopathology , Incidence , Male , Pandemics/statistics & numerical data , Practice Guidelines as Topic , Prognosis , Research Design , Risk Assessment , Severe Acute Respiratory Syndrome/epidemiology
12.
J Biol Chem ; 295(9): 2771-2786, 2020 02 28.
Article En | MEDLINE | ID: mdl-31949044

Research in the last decade has uncovered many new paramyxoviruses, airborne agents that cause epidemic diseases in animals including humans. Most paramyxoviruses enter epithelial cells of the airway using sialic acid as a receptor and cause only mild disease. However, others cross the epithelial barrier and cause more severe disease. For some of these viruses, the host receptors have been identified, and the mechanisms of cell entry have been elucidated. The tetrameric attachment proteins of paramyxoviruses have vastly different binding affinities for their cognate receptors, which they contact through different binding surfaces. Nevertheless, all input signals are converted to the same output: conformational changes that trigger refolding of trimeric fusion proteins and membrane fusion. Experiments with selectively receptor-blinded viruses inoculated into their natural hosts have provided insights into tropism, identifying the cells and tissues that support growth and revealing the mechanisms of pathogenesis. These analyses also shed light on diabolically elegant mechanisms used by morbilliviruses, including the measles virus, to promote massive amplification within the host, followed by efficient aerosolization and rapid spread through host populations. In another paradigm of receptor-facilitated severe disease, henipaviruses, including Nipah and Hendra viruses, use different members of one protein family to cause zoonoses. Specific properties of different paramyxoviruses, like neurotoxicity and immunosuppression, are now understood in the light of receptor specificity. We propose that research on the specific receptors for several newly identified members of the Paramyxoviridae family that may not bind sialic acid is needed to anticipate their zoonotic potential and to generate effective vaccines and antiviral compounds.


Paramyxoviridae/physiology , Receptors, Virus , Virus Internalization , Animals , Humans , Membrane Fusion , Paramyxoviridae/pathogenicity , Tropism , Virus Attachment , Zoonoses
13.
Methods Mol Biol ; 2058: 51-75, 2020.
Article En | MEDLINE | ID: mdl-31486031

This chapter describes the development of recombinant oncolytic measles viruses (MeV) that selectively enter and destroy tumor cells. The envelope of MeV is a favorable targeting substrate because receptor attachment and membrane fusion functions are separated on two proteins: the hemagglutinin (H) that binds receptors, and the fusion (F) protein that fuses the viral envelope with the cell membrane. The cell entry process, which depends on receptor recognition and occurs at the plasma membrane at neutral pH, results in the delivery of encapsidated genomes to the cytoplasm, where they replicate. Towards improving cancer specificity of oncolytic MeV, two types of cell entry targeting have been achieved. First, entry has been redirected through cancer-specific cell surface proteins. This was done by displaying specificity domains on H while also ablating binding to its natural receptors. Second, activation of the F protein was made dependent on secreted cancer proteases, while also interfering with F cleavage/activation by a ubiquitous intracellular protease. This chapter describes how entry-targeted MeV are produced: In short, gene cassettes with modified H or F coding regions are generated, and then introduced into the viral genome available on plasmid DNA. Such full-length genome plasmids are transfected in cell lines expressing, stably or transiently, the three viral proteins necessary for genome replication. Infectious centers form among these "rescue" cells, which allow isolation of clonal recombinant viruses. These are amplified, characterized in vitro, and then evaluated for their oncolytic activity in appropriate preclinical animal models.


Genetic Engineering , Genetic Vectors/genetics , Measles virus/genetics , Oncolytic Viruses/genetics , Animals , Chlorocebus aethiops , Cloning, Molecular , Gene Expression , Gene Order , Genetic Engineering/methods , HEK293 Cells , Humans , Mice , Plasmids/genetics , Receptors, Virus/metabolism , Vero Cells , Virus Attachment , Virus Internalization
14.
J Virol ; 94(4)2020 01 31.
Article En | MEDLINE | ID: mdl-31748390

Measles virus (MeV), like all viruses of the order Mononegavirales, utilizes a complex consisting of genomic RNA, nucleoprotein, the RNA-dependent RNA polymerase, and a polymerase cofactor, the phosphoprotein (P), for transcription and replication. We previously showed that a recombinant MeV that does not express another viral protein, C, has severe transcription and replication deficiencies, including a steeper transcription gradient than the parental virus and generation of defective interfering RNA. This virus is attenuated in vitro and in vivo However, how the C protein operates and whether it is a component of the replication complex remained unclear. Here, we show that C associates with the ribonucleocapsid and forms a complex that can be purified by immunoprecipitation or ultracentrifugation. In the presence of detergent, the C protein is retained on purified ribonucleocapsids less efficiently than the P protein and the polymerase. The C protein is recruited to the ribonucleocapsid through its interaction with the P protein, as shown by immunofluorescence microscopy of cells expressing different combinations of viral proteins and by split luciferase complementation assays. Forty amino-terminal C protein residues are dispensable for the interaction with P, and the carboxyl-terminal half of P is sufficient for the interaction with C. Thus, the C protein, rather than being an "accessory" protein as qualified in textbooks so far, is a ribonucleocapsid-associated protein that interacts with P, thereby increasing replication accuracy and processivity of the polymerase complex.IMPORTANCE Replication of negative-strand RNA viruses relies on two components: a helical ribonucleocapsid and an RNA-dependent RNA polymerase composed of a catalytic subunit, the L protein, and a cofactor, the P protein. We show that the measles virus (MeV) C protein is an additional component of the replication complex. We provide evidence that the C protein is recruited to the ribonucleocapsid by the P protein and map the interacting segments of both C and P proteins. We conclude that the primary function of MeV C is to improve polymerase processivity and accuracy, rather than uniquely to antagonize the type I interferon response. Since most viruses of the Paramyxoviridae family express C proteins, their primary function may be conserved.


Measles virus/metabolism , Nucleoproteins/genetics , Viral Nonstructural Proteins/metabolism , Viral Proteins/genetics , Animals , Carrier Proteins , Cell Line , Chlorocebus aethiops , HEK293 Cells , HeLa Cells , Humans , Measles/virology , Measles virus/genetics , Nucleocapsid Proteins , Nucleoproteins/metabolism , Phosphoproteins/metabolism , Protein Binding , RNA-Dependent RNA Polymerase/metabolism , Vero Cells , Viral Nonstructural Proteins/physiology , Viral Proteins/metabolism , Virus Activation/genetics , Virus Replication/genetics
15.
mBio ; 10(6)2019 11 26.
Article En | MEDLINE | ID: mdl-31772054

Measles virus (MeV) is a highly contagious human pathogen that continues to be a worldwide health burden. One of the challenges for the study of MeV spread is the identification of model systems that accurately reflect how MeV behaves in humans. For our studies, we use unpassaged, well-differentiated primary cultures of airway epithelial cells from human donor lungs to examine MeV infection and spread. Here, we show that the main components of the MeV ribonucleoprotein complex (RNP), the nucleocapsid and phosphoprotein, colocalize with the apical and circumapical F-actin networks. To better understand how MeV infections spread across the airway epithelium, we generated a recombinant virus incorporating chimeric fluorescent proteins in its RNP complex. By live cell imaging, we observed rapid movement of RNPs along the circumapical F-actin rings of newly infected cells. This strikingly rapid mechanism of horizontal trafficking across epithelia is consistent with the opening of pores between columnar cells by the viral membrane fusion apparatus. Our work provides mechanistic insights into how MeV rapidly spreads through airway epithelial cells, contributing to its extremely contagious nature.IMPORTANCE The ability of viral particles to directly spread cell to cell within the airways without particle release is considered to be highly advantageous to many respiratory viruses. Our previous studies in well-differentiated, primary human airway epithelial cells suggest that measles virus (MeV) spreads cell to cell by eliciting the formation of intercellular membrane pores. Based on a newly generated ribonucleoprotein complex (RNP) "tracker" virus, we document by live-cell microscopy that MeV RNPs move along F-actin rings before entering a new cell. Thus, rather than diffusing through the cytoplasm of a newly infected columnar cell, RNPs take advantage of the cytoskeletal infrastructure to rapidly spread laterally across the human airway epithelium. This results in rapid horizontal spread through the epithelium that does not require particle release.


Actins/metabolism , Epithelial Cells/virology , Measles virus/metabolism , Measles/virology , Ribonucleoproteins/metabolism , Viral Proteins/metabolism , Cell Differentiation , Epithelial Cells/cytology , Epithelial Cells/metabolism , Humans , Lung/cytology , Lung/metabolism , Lung/virology , Measles/metabolism , Measles virus/genetics , Ribonucleoproteins/genetics , Viral Proteins/genetics
16.
Proc Natl Acad Sci U S A ; 116(41): 20707-20715, 2019 10 08.
Article En | MEDLINE | ID: mdl-31548390

Cedar virus (CedV) is a bat-borne henipavirus related to Nipah virus (NiV) and Hendra virus (HeV), zoonotic agents of fatal human disease. CedV receptor-binding protein (G) shares only ∼30% sequence identity with those of NiV and HeV, although they can all use ephrin-B2 as an entry receptor. We demonstrate that CedV also enters cells through additional B- and A-class ephrins (ephrin-B1, ephrin-A2, and ephrin-A5) and report the crystal structure of the CedV G ectodomain alone and in complex with ephrin-B1 or ephrin-B2. The CedV G receptor-binding site is structurally distinct from other henipaviruses, underlying its capability to accommodate additional ephrin receptors. We also show that CedV can enter cells through mouse ephrin-A1 but not human ephrin-A1, which differ by 1 residue in the key contact region. This is evidence of species specific ephrin receptor usage by a henipavirus, and implicates additional ephrin receptors in potential zoonotic transmission.


Ephrin-B1/metabolism , Ephrin-B2/metabolism , Ephrin-B3/metabolism , Henipavirus Infections/virology , Henipavirus/physiology , Receptors, Virus/metabolism , Viral Envelope Proteins/chemistry , Animals , Cell Fusion , Ephrin-B1/genetics , Ephrin-B2/genetics , Ephrin-B3/genetics , Henipavirus Infections/genetics , Henipavirus Infections/metabolism , Humans , Mice , Mutation , Protein Binding , Protein Conformation , Receptors, Virus/genetics , Species Specificity , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Virus Internalization
17.
J Cell Sci ; 132(16)2019 08 23.
Article En | MEDLINE | ID: mdl-31331966

Here, we show that cells expressing the adherens junction protein nectin-1 capture nectin-4-containing membranes from the surface of adjacent cells in a trans-endocytosis process. We find that internalized nectin-1-nectin-4 complexes follow the endocytic pathway. The nectin-1 cytoplasmic tail controls transfer: its deletion prevents trans-endocytosis, while its exchange with the nectin-4 tail reverses transfer direction. Nectin-1-expressing cells acquire dye-labeled cytoplasmic proteins synchronously with nectin-4, a process most active during cell adhesion. Some cytoplasmic cargo remains functional after transfer, as demonstrated with encapsidated genomes of measles virus (MeV). This virus uses nectin-4, but not nectin-1, as a receptor. Epithelial cells expressing nectin-4, but not those expressing another MeV receptor in its place, can transfer infection to nectin-1-expressing primary neurons. Thus, this newly discovered process can move cytoplasmic cargo, including infectious material, from epithelial cells to neurons. We name the process nectin-elicited cytoplasm transfer (NECT). NECT-related trans-endocytosis processes may be exploited by pathogens to extend tropism. This article has an associated First Person interview with the first author of the paper.


Cell Adhesion Molecules/metabolism , Endocytosis , Epithelial Cells/metabolism , Measles virus/metabolism , Nectins/metabolism , Virus Internalization , Biological Transport, Active/genetics , Cell Adhesion/genetics , Cell Adhesion Molecules/genetics , Cell Line , Humans , Measles virus/genetics , Nectins/genetics
18.
Mayo Clin Proc ; 94(9): 1834-1839, 2019 09.
Article En | MEDLINE | ID: mdl-31235278

Recent measles epidemics in US and European cities where vaccination coverage has declined are providing a harsh reminder for the need to maintain protective levels of immunity across the entire population. Vaccine uptake rates have been declining in large part because of public misinformation regarding a possible association between measles vaccination and autism for which there is no scientific basis. The purpose of this article is to address a new misinformed antivaccination argument-that measles immunity is undesirable because measles virus is protective against cancer. Having worked for many years to develop engineered measles viruses as anticancer therapies, we have concluded (1) that measles is not protective against cancer and (2) that its potential utility as a cancer therapy will be enhanced, not diminished, by prior vaccination.


Communication , Measles virus/immunology , Measles/epidemiology , Measles/prevention & control , Oncolytic Virotherapy/methods , Vaccination/adverse effects , Child , Child, Preschool , Communicable Disease Control/organization & administration , Europe , Female , Humans , Male , Prevalence , Risk Assessment , United States , Vaccination/methods
19.
Virus Res ; 265: 74-79, 2019 05.
Article En | MEDLINE | ID: mdl-30853585

Measles virus (MeV) is an immunosuppressive, extremely contagious RNA virus that remains a leading cause of death among children. MeV is dual-tropic: it replicates first in lymphatic tissue, causing immunosuppression, and then in epithelial cells of the upper airways, accounting for extremely efficient contagion. Efficient contagion is counter-intuitive because the enveloped MeV particles are large and relatively unstable. However, MeV particles can contain multiple genomes, which can code for proteins with different functional characteristics. These proteins can cooperate to promote virus spread in tissue culture, prompting the question of whether multi-genome MeV transmission may promote efficient MeV spread also in vivo. Consistent with this hypothesis, in well-differentiated primary human airway epithelia large genome populations spread rapidly through intercellular pores. In another line of research, it was shown that distinct lymphocytic-adapted and epithelial-adapted genome populations exist; cyclical adaptation studies indicate that suboptimal variants in one environment may constitute a low frequency reservoir for adaptation to the other environment. Altogether, these observations suggest that, in humans, MeV spread relies on en bloc genome transmission, and that genomic diversity is instrumental for rapid MeV dissemination within hosts.


Epithelial Cells/virology , Genome, Viral , Measles virus/genetics , Measles/transmission , Respiratory Mucosa/virology , Cells, Cultured , Genetic Variation , Humans , Measles virus/physiology , Receptors, Virus/metabolism , Respiratory System , Virion/metabolism , Virus Internalization
20.
PLoS Pathog ; 15(2): e1007605, 2019 02.
Article En | MEDLINE | ID: mdl-30768648

Measles virus (MeV) is dual-tropic: it replicates first in lymphatic tissues and then in epithelial cells. This switch in tropism raises the question of whether, and how, intra-host evolution occurs. Towards addressing this question, we adapted MeV either to lymphocytic (Granta-519) or epithelial (H358) cells. We also passaged it consecutively in both human cell lines. Since passaged MeV had different replication kinetics, we sought to investigate the underlying genetic mechanisms of growth differences by performing deep-sequencing analyses. Lymphocytic adaptation reproducibly resulted in accumulation of variants mapping within an 11-nucleotide sequence located in the middle of the phosphoprotein (P) gene. This sequence mediates polymerase slippage and addition of a pseudo-templated guanosine to the P mRNA. This form of co-transcriptional RNA editing results in expression of an interferon antagonist, named V, in place of a polymerase co-factor, named P. We show that lymphocytic-adapted MeV indeed produce minimal amounts of edited transcripts and V protein. In contrast, parental and epithelial-adapted MeV produce similar levels of edited and non-edited transcripts, and of V and P proteins. Raji, another lymphocytic cell line, also positively selects V-deficient MeV genomes. On the other hand, in epithelial cells V-competent MeV genomes rapidly out-compete the V-deficient variants. To characterize the mechanisms of genome re-equilibration we rescued four recombinant MeV carrying individual editing site-proximal mutations. Three mutations interfered with RNA editing, resulting in almost exclusive P protein expression. The fourth preserved RNA editing and a standard P-to-V protein expression ratio. However, it altered a histidine involved in Zn2+ binding, inactivating V function. Thus, the lymphocytic environment favors replication of V-deficient MeV, while the epithelial environment has the opposite effect, resulting in rapid and thorough cyclical quasispecies re-equilibration. Analogous processes may occur in natural infections with other dual-tropic RNA viruses.


Measles virus/metabolism , Phosphoproteins/metabolism , Viral Proteins/metabolism , Cell Line , Epithelial Cells/metabolism , Epithelial Cells/virology , High-Throughput Nucleotide Sequencing/methods , Humans , Lymphocytes/metabolism , Lymphocytes/virology , Measles , Measles virus/pathogenicity , Phosphoproteins/genetics , Quasispecies/genetics , Quasispecies/immunology , RNA Editing/genetics , RNA, Messenger/genetics , Transcription, Genetic , Viral Proteins/genetics , Virus Replication/genetics
...