Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Biomed Phys Eng Express ; 10(4)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923907

ABSTRACT

Objective: To summarize our institutional prostate stereotactic body radiation therapy (SBRT) experience using auto beam hold (ABH) technique for intrafractional prostate motion and assess ABH tolerance of 10-millimeter (mm) diameter.Approach: Thirty-two patients (160 fractions) treated using ABH technique between 01/2018 and 03/2021 were analyzed. During treatment, kV images were acquired every 20-degree gantry rotation to visualize 3-4 gold fiducials within prostate to track target motion. If the fiducial center fell outside the tolerance circle (diameter = 10 mm), beam was automatically turned off for reimaging and repositioning. Number of beam holds and couch translational movement magnitudes were recorded. Dosimetric differences from intrafractional motion were calculated by shifting planned isocenter.Main Results: Couch movement magnitude (mean ± SD) in vertical, longitudinal and lateral directions were -0.7 ± 2.5, 1.4 ± 2.9 and -0.1 ± 0.9 mm, respectively. For most fractions (77.5%), no correction was necessary. Number of fractions requiring one, two, or three corrections were 15.6%, 5.6% and 1.3%, respectively. Of the 49 corrections, couch shifts greater than 3 mm were seen primarily in the vertical (31%) and longitudinal (39%) directions; corresponding couch shifts greater than 5 mm occurred in 2% and 6% of cases. Dosimetrically, 100% coverage decreased less than 2% for clinical target volume (CTV) (-1 ± 2%) and less than 10% for PTV (-10 ± 6%). Dose to bladder, bowel and urethra tended to increase (Bladder: ΔD10%:184 ± 466 cGy, ΔD40%:139 ± 241 cGy, Bowel: ΔD1 cm3:54 ± 129 cGy; ΔD5 cm3:44 ± 116 cGy, Urethra: ΔD0.03 cm3:1 ± 1%). Doses to the rectum tended to decrease (Rectum: ΔD1 cm3:-206 ± 564 cGy, ΔD10%:-97 ± 426 cGy; ΔD20%:-50 ± 251 cGy).Significance: With the transition from conventionally fractionated intensity modulated radiation therapy to SBRT for localized prostate cancer treatment, it is imperative to ensure that dose delivery is spatially accurate for appropriate coverage to target volumes and limiting dose to surrounding organs. Intrafractional motion monitoring can be achieved using triggered imaging to image fiducial markers and ABH to allow for reimaging and repositioning for excessive motion.


Subject(s)
Movement , Prostate , Prostatic Neoplasms , Radiometry , Radiosurgery , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Humans , Male , Prostatic Neoplasms/radiotherapy , Radiosurgery/methods , Prostate/radiation effects , Radiotherapy Planning, Computer-Assisted/methods , Radiometry/methods , Fiducial Markers , Motion , Dose Fractionation, Radiation , Radiotherapy, Intensity-Modulated/methods , Urinary Bladder , Rectum , Organs at Risk/radiation effects
2.
Front Neurosci ; 17: 1162096, 2023.
Article in English | MEDLINE | ID: mdl-37719158

ABSTRACT

The cerebral cortex varies over the course of a person's life span: at birth, the surface is smooth, before becoming more bumpy (deeper sulci and thicker gyri) in middle age, and thinner in senior years. In this work, a similar phenomenon was observed on the hippocampus. It was previously believed the fine-scale morphology of the hippocampus could only be extracted only with high field scanners (7T, 9.4T); however, recent studies show that regular 3T MR scanners can be sufficient for this purpose. This finding opens the door for the study of fine hippocampal morphometry for a large amount of clinical data. In particular, a characteristic bumpy and subtle feature on the inferior aspect of the hippocampus, which we refer to as hippocampal dentation, presents a dramatic degree of variability between individuals from very smooth to highly dentated. In this report, we propose a combined method joining deep learning and sub-pixel level set evolution to efficiently obtain fine-scale hippocampal segmentation on 552 healthy subjects. Through non-linear dentation extraction and fitting, we reveal that the bumpiness of the inferior surface of the human hippocampus has a clear temporal trend. It is bumpiest between 40 and 50 years old. This observation should be aligned with neurodevelopmental and aging stages.

3.
Diagnostics (Basel) ; 14(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38201380

ABSTRACT

Accurate differentiation of benign and malignant cervical lymph nodes is important for prognosis and treatment planning in patients with head and neck squamous cell carcinoma. We evaluated the diagnostic performance of magnetic resonance image (MRI) texture analysis and traditional 18F-deoxyglucose positron emission tomography (FDG-PET) features. This retrospective study included 21 patients with head and neck squamous cell carcinoma. We used texture analysis of MRI and FDG-PET features to evaluate 109 histologically confirmed cervical lymph nodes (41 metastatic, 68 benign). Predictive models were evaluated using area under the curve (AUC). Significant differences were observed between benign and malignant cervical lymph nodes for 36 of 41 texture features (p < 0.05). A combination of 22 MRI texture features discriminated benign and malignant nodal disease with AUC, sensitivity, and specificity of 0.952, 92.7%, and 86.7%, which was comparable to maximum short-axis diameter, lymph node morphology, and maximum standard uptake value (SUVmax). The addition of MRI texture features to traditional FDG-PET features differentiated these groups with the greatest AUC, sensitivity, and specificity (0.989, 97.5%, and 94.1%). The addition of the MRI texture feature to lymph node morphology improved nodal assessment specificity from 70.6% to 88.2% among FDG-PET indeterminate lymph nodes. Texture features are useful for differentiating benign and malignant cervical lymph nodes in patients with head and neck squamous cell carcinoma. Lymph node morphology and SUVmax remain accurate tools. Specificity is improved by the addition of MRI texture features among FDG-PET indeterminate lymph nodes. This approach is useful for differentiating benign and malignant cervical lymph nodes.

4.
Clin Breast Cancer ; 20(1): 68-79.e1, 2020 02.
Article in English | MEDLINE | ID: mdl-31327729

ABSTRACT

INTRODUCTION: Longitudinal monitoring of breast tumor volume over the course of chemotherapy is informative of pathologic response. This study aims to determine whether axillary lymph node (aLN) volume by magnetic resonance imaging (MRI) could augment the prediction accuracy of treatment response to neoadjuvant chemotherapy (NAC). MATERIALS AND METHODS: Level-2a curated data from the I-SPY-1 TRIAL (2002-2006) were used. Patients had stage 2 or 3 breast cancer. MRI was acquired pre-, during, and post-NAC. A subset with visible aLNs on MRI was identified (N = 132). Prediction of pathologic complete response (PCR) was made using breast tumor volume changes, nodal volume changes, and combined breast tumor and nodal volume changes with sub-stratification with and without large lymph nodes (3 mL or ∼1.79 cm diameter cutoff). Receiver operating characteristic curve analysis was used to quantify prediction performance. RESULTS: The rate of change of aLN and breast tumor volume were informative of pathologic response, with prediction being most informative early in treatment (area under the curve (AUC), 0.57-0.87) compared with later in treatment (AUC, 0.50-0.75). Larger aLN volume was associated with hormone receptor negativity, with the largest nodal volume for triple negative subtypes. Sub-stratification by node size improved predictive performance, with the best predictive model for large nodes having AUC of 0.87. CONCLUSION: aLN MRI offers clinically relevant information and has the potential to predict treatment response to NAC in patients with breast cancer.


Subject(s)
Breast Neoplasms/therapy , Magnetic Resonance Imaging , Neoadjuvant Therapy , Sentinel Lymph Node/diagnostic imaging , Tumor Burden/drug effects , Adult , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Axilla , Breast/pathology , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Chemotherapy, Adjuvant/methods , Clinical Trials, Phase II as Topic , Datasets as Topic , Female , Humans , Lymphatic Metastasis , Mastectomy , Middle Aged , Predictive Value of Tests , Prognosis , Randomized Controlled Trials as Topic , Retrospective Studies , Sentinel Lymph Node/drug effects , Sentinel Lymph Node/pathology , Treatment Outcome
5.
Sci Rep ; 9(1): 1198, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718607

ABSTRACT

Conventional radiation therapy of brain tumors often produces cognitive deficits, particularly in children. We investigated the potential efficacy of merging Orthovoltage X-ray Minibeams (OXM). It segments the beam into an array of parallel, thin (~0.3 mm), planar beams, called minibeams, which are known from synchrotron x-ray experiments to spare tissues. Furthermore, the slight divergence of the OXM array make the individual minibeams gradually broaden, thus merging with their neighbors at a given tissue depth to produce a solid beam. In this way the proximal tissues, including the cerebral cortex, can be spared. Here we present experimental results with radiochromic films to characterize the method's dosimetry. Furthermore, we present our Monte Carlo simulation results for physical absorbed dose, and a first-order biologic model to predict tissue tolerance. In particular, a 220-kVp orthovoltage beam provides a 5-fold sharper lateral penumbra than a 6-MV x-ray beam. The method can be implemented in arc-scan, which may include volumetric-modulated arc therapy (VMAT). Finally, OXM's low beam energy makes it ideal for tumor-dose enhancement with contrast agents such as iodine or gold nanoparticles, and its low cost, portability, and small room-shielding requirements make it ideal for use in the low-and-middle-income countries.


Subject(s)
Radiotherapy/methods , Brain Neoplasms/surgery , Computer Simulation , Gold , Humans , Metal Nanoparticles , Models, Biological , Monte Carlo Method , Radiography/methods , Radiometry/methods , Radiosurgery/methods , Radiotherapy Dosage , X-Ray Therapy/methods , X-Rays
6.
Acad Radiol ; 25(8): 1070-1074, 2018 08.
Article in English | MEDLINE | ID: mdl-29395797

ABSTRACT

RATIONALE AND OBJECTIVES: We aimed to determine if both evidence level (EL) as well as clinical efficacy (CE) of imaging manuscripts have changed over the last 20 years. MATERIALS AND METHODS: With our review of medical literature, Institutional Review Board approval was waived, and no informed consent was required. Using Web of Science, we determined the 10 highest impact factor imaging journals. For each journal the 10 most cited and 10 average cited papers were compared for the following years: 1994, 1998, 2002, 2006, 2010, and 2014. EL was graded using the same criteria as the Journal of Bone and Joint Surgery (Wright et al., 2003). CE was graded using the criteria of Thornbury and Fryback (1991). Statistical software R and package lme4 were used to fit mixed regression models with fixed effects for group, year, and a random effect for journal. RESULTS: EL has improved -0.03 every year on average (P < .001). The more cited papers had better ELs (group effect = -0.23, SE 0.09, P = .011). CE is lower in top cited compared to average cited articles, although the differences were not statistically significant (group effect = -0.14, SE = 0.09, P = .16). CE level increased modestly in both groups over this 20-year time period (0.06 per year, SE = 0.007, P < .001). CONCLUSION: Over the last 20 years, imaging journal articles have improved modestly in quality of evidence, as measured by EL and CE.


Subject(s)
Bibliometrics , Diagnostic Imaging , Evidence-Based Medicine/standards , Periodicals as Topic/standards , Radiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...