Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters











Publication year range
1.
PNAS Nexus ; 3(9): pgae383, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39328473

ABSTRACT

In photonic crystals, the propagation of light is governed by their photonic band structure, an ensemble of propagating states grouped into bands, separated by photonic band gaps. Due to discrete symmetries in spatially strictly periodic dielectric structures their photonic band structure is intrinsically anisotropic. However, for many applications, such as manufacturing artificial structural color materials or developing photonic computing devices, but also for the fundamental understanding of light-matter interactions, it is of major interest to seek materials with long range nonperiodic dielectric structures which allow the formation of isotropic photonic band gaps. Here, we report the first ever 3D isotropic photonic band gap for an optimized disordered stealthy hyperuniform structure for microwaves. The transmission spectra are directly compared to a diamond pattern and an amorphous structure with similar node density. The band structure is measured experimentally for all three microwave structures, manufactured by 3D laser printing for metamaterials with refractive index up to n = 2.1 . Results agree well with finite-difference-time-domain numerical investigations and a priori calculations of the band gap for the hyperuniform structure: the diamond structure shows gaps but being anisotropic as expected, the stealthy hyperuniform pattern shows an isotropic gap of very similar magnitude, while the amorphous structure does not show a gap at all. Since they are more easily manufactured, prototyping centimeter scaled microwave structures may help optimizing structures in the technologically very interesting region of infrared.

2.
Chem Mater ; 36(8): 3970-3975, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38681086

ABSTRACT

Driven systems composed largely of droplets and fuel make up a significant portion of microbiological function. At the micrometer scale, fully synthetic systems that perform an array of tasks within a uniform bulk are much more rare. In this work, we introduce an innovative design for solid-in-oil composite microdroplets. These microdroplets are engineered to nucleate an internal phase, undergo inflation, and eventually burst, all powered by a steady and uniform energy input. We show that by altering the background input, volumetric change and burst time can be tuned. When the inflated droplets release the inner contents, colloidal particles are shown to transiently attract to the release point. Lastly, we show that the system has the ability to perform multiple inflation-burst cycles. We anticipate that our conceptual design of internally powered microdroplets will catalyze further research into autonomous systems capable of intricate communication as well as inspire the development of advanced, responsive materials.

3.
Sci Robot ; 8(85): eadf1274, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38055806

ABSTRACT

Nanoscale industrial robots have potential as manufacturing platforms and are capable of automatically performing repetitive tasks to handle and produce nanomaterials with consistent precision and accuracy. We demonstrate a DNA industrial nanorobot that fabricates a three-dimensional (3D), optically active chiral structure from optically inactive parts. By making use of externally controlled temperature and ultraviolet (UV) light, our programmable robot, ~100 nanometers in size, grabs different parts, positions and aligns them so that they can be welded, releases the construct, and returns to its original configuration ready for its next operation. Our robot can also self-replicate its 3D structure and functions, surpassing single-step templating (restricted to two dimensions) by using folding to access the third dimension and more degrees of freedom. Our introduction of multiple-axis precise folding and positioning as a tool/technology for nanomanufacturing will open the door to more complex and useful nano- and microdevices.


Subject(s)
Nanostructures , Robotics , Robotics/methods , DNA/chemistry , Nanostructures/chemistry
4.
Phys Rev Lett ; 131(23): 238202, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38134769

ABSTRACT

A simple dynamical model, biased random organization (BRO), appears to produce configurations known as random close packing (RCP) as BRO's densest critical point in dimension d=3. We conjecture that BRO likewise produces RCP in any dimension; if so, then RCP does not exist in d=1-2 (where BRO dynamics lead to crystalline order). In d=3-5, BRO produces isostatic configurations and previously estimated RCP volume fractions 0.64, 0.46, and 0.30, respectively. For all investigated dimensions (d=2-5), we find that BRO belongs to the Manna universality class of dynamical phase transitions by measuring critical exponents associated with the steady-state activity and the long-range density fluctuations. Additionally, BRO's distribution of near contacts (gaps) displays behavior consistent with the infinite-dimensional theoretical treatment of RCP when d≥4. The association of BRO's densest critical configurations with random close packing implies that RCP's upper-critical dimension is consistent with the Manna class d_{uc}=4.

5.
Soft Matter ; 19(38): 7334-7342, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37727916

ABSTRACT

The ability of active matter to assemble into reconfigurable nonequilibrium structures has drawn considerable interest in recent years. We investigate how active fluids respond to spatial light patterns through simulations and experiments on light-activated self-propelled colloidal particles. We examine the processes of inverse templated assembly, which involves creating a region without active particles through a bright pattern, and templated assembly, which promotes the formation of dense particle regions through a dark pattern. We identify scaling relations for the characteristic times for both processes that quantify the interplay between the dimension of the applied pattern and the intrinsic properties of the active fluid. We also explore the assembly mechanism and dynamics of large clusters and show how assembly and inverse assembly can be combined to create any arbitrarily complex template. In addition to providing protocols for templated assembly via light patterning, our results demonstrate how the local packing fraction can be fine-tuned by modulation of the light intensity. The protocol so obtained exceeds the capabilities of conventional assembly strategies, in which packing fraction is dictated by thermodynamics, and opens the door to arbitrarily precise and programmable nonequilibrium assembly strategies in active matter.

6.
Nat Commun ; 14(1): 4114, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37433767

ABSTRACT

Vortical flows of rotating particles describe interactions ranging from molecular machines to atmospheric dynamics. Yet to date, direct observation of the hydrodynamic coupling between artificial micro-rotors has been restricted by the details of the chosen drive, either through synchronization (using external magnetic fields) or confinement (using optical tweezers). Here we present a new active system that illuminates the interplay of rotation and translation in free rotors. We develop a non-tweezing circularly polarized beam that simultaneously rotates hundreds of silica-coated birefringent colloids. The particles rotate asynchronously in the optical torque field while freely diffusing in the plane. We observe that neighboring particles orbit each other with an angular velocity that depends on their spins. We derive an analytical model in the Stokes limit for pairs of spheres that quantitatively explains the observed dynamics. We then find that the geometrical nature of the low Reynolds fluid flow results in a universal hydrodynamic spin-orbit coupling. Our findings are of significance for the understanding and development of far-from-equilibrium materials.

7.
Phys Rev Lett ; 129(22): 220601, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36493452

ABSTRACT

Time-reversal symmetry breaking and entropy production are universal features of nonequilibrium phenomena. Despite its importance in the physics of active and living systems, the entropy production of systems with many degrees of freedom has remained of little practical significance because the high dimensionality of their state space makes it difficult to measure. Here we introduce a local measure of entropy production and a numerical protocol to estimate it. We establish a connection between the entropy production and extractability of work in a given region of the system and show how this quantity depends crucially on the degrees of freedom being tracked. We validate our approach in theory, simulation, and experiments by considering systems of active Brownian particles undergoing motility-induced phase separation, as well as active Brownian particles and E.coli in a rectifying device in which the time-reversal asymmetry of the particle dynamics couples to spatial asymmetry to reveal its effects on a macroscopic scale.


Subject(s)
Physics , Entropy , Computer Simulation , Physics/methods
8.
Phys Rev Lett ; 129(18): 188002, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36374694

ABSTRACT

Under the influence of oscillatory shear, a monolayer of frictional granular disks exhibits two dynamical phase transitions: a transition from an initially disordered state to an ordered crystalline state and a dynamic active-absorbing phase transition. Although there is no reason a priori for these to be at the same critical point, they are. The transitions may also be characterized by the disk trajectories, which are nontrivial loops breaking time-reversal invariance.

9.
iScience ; 25(6): 104373, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35620419

ABSTRACT

Two-dimensional (2D) DNA origami that is capable of self-assembling into complex 2D and 3D geometries pave the way for a bottom-up synthesis for various applications in nano/biotechnology. Here, we directly visualized the aqueous structure of 2D DNA origami cross-tiles and their assemblies using cryogenic electron microscopy. We uncovered flexible arms in cross-tile monomers and designated inter-tile folding. In addition, we observed the formation of clusters and stacks of DNA cross-tiles in solution, which could potentially affect the interaction and assembly of DNA origami. Finally, we quantitatively evaluated the flexibility of DNA origami in solution using finite element analysis. Our discovery has laid the foundation for investigating the dynamic structures of 2D DNA origami assemblies in solution, providing insights regarding the self-assembly and self-replication mechanisms of 2D DNA origami.

10.
Nat Commun ; 13(1): 184, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013335

ABSTRACT

While motile bacteria display rich dynamics in dense colonies, the phoretic nature of artificial micro-swimmers restricts their activity when crowded. Here we introduce a new class of synthetic micro-swimmers that are driven solely by light. By coupling a light absorbing particle to a fluid droplet we produce a colloidal chimera that transforms optical power into propulsive thermo-capillary action. The swimmers' internal drive allows them to operate for a long duration (days) and remain active when crowded, forming a high density fluid phase. We find that above a critical concentration, swimmers form a long lived crowded state that displays internal dynamics. When passive particles are introduced, the dense swimmer phase can re-arrange to spontaneously corral the passive particles. We derive a geometrical, depletion-like condition for corralling by identifying the role the passive particles play in controlling the effective concentration of the micro-swimmers.

11.
Phys Rev Lett ; 127(3): 038002, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34328779

ABSTRACT

Sphere packing is an ancient problem. The densest packing is known to be a face-centered cubic (FCC) crystal, with space-filling fraction ϕ_{FCC}=π/sqrt[18]≈0.74. The densest "random packing," random close packing (RCP), is yet ill defined, although many experiments and simulations agree on a value ϕ_{RCP}≈0.64. We introduce a simple absorbing-state model, biased random organization (BRO), which exhibits a Manna class dynamical phase transition between absorbing and active states that has as its densest critical point ϕ_{c_{max}}≈0.64≈ϕ_{RCP} and, like other Manna class models, is hyperuniform at criticality. The configurations we obtain from BRO appear to be structurally identical to RCP configurations from other protocols. This leads us to conjecture that the highest-density absorbing state for an isotropic biased random organization model produces an ensemble of configurations that characterizes the state conventionally known as RCP.

12.
Phys Rev Lett ; 125(17): 170601, 2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33156672

ABSTRACT

Computable information density (CID), the ratio of the length of a losslessly compressed data file to that of the uncompressed file, is a measure of order and correlation in both equilibrium and nonequilibrium systems. Here we show that correlation lengths can be obtained by decimation, thinning a configuration by sampling data at increasing intervals and recalculating the CID. When the sampling interval is larger than the system's correlation length, the data becomes incompressible. The correlation length and its critical exponents are thus accessible with no a priori knowledge of an order parameter or even the nature of the ordering. The correlation length measured in this way agrees well with that computed from the decay of two-point correlation functions g_{2}(r) when they exist. But the CID reveals the correlation length and its scaling even when g_{2}(r) has no structure, as we demonstrate by "cloaking" the data with a Rudin-Shapiro sequence.

13.
Phys Rev Lett ; 125(14): 148001, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33064537

ABSTRACT

In periodically sheared suspensions there is a dynamical phase transition, characterized by a critical strain amplitude γ_{c}, between an absorbing state where particle trajectories are reversible and an active state where trajectories are chaotic and diffusive. Repulsive nonhydrodynamic interactions between "colliding" particles' surfaces have been proposed as a source of this broken time reversal symmetry. A simple toy model called random organization qualitatively reproduces the dynamical features of this transition. Random organization and other absorbing state models exhibit hyperuniformity, a strong suppression of density fluctuations on long length scales quantified by a structure factor S(q→0)∼q^{α} with α>0, at criticality. Here we show experimentally that the particles in periodically sheared suspensions organize into structures with anisotropic short-range order but isotropic, long-range hyperuniform order when oscillatory shear amplitudes approach γ_{c}.

14.
Soft Matter ; 16(18): 4358-4365, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32364206

ABSTRACT

Colloidal synthesis is a powerful bottom-up approach for programmed self-assembly which holds promise for both research and industry. While diverse, each synthetic process is typically restricted to a specific chemistry. Many applications however require composite materials, whereas a chemical equilibrium can typically only match one material but not the other. Here, a scalable general approach is presented, alleviating the dependency on a specific chemical reaction, by resorting to a mechanical equilibrium; an isopycnic density-gradient-step is tailored to form clusters with prescribed composition. Valence control is demonstrated, making dimers, trimers, and tetramers with purity as high as 96%. The measured kinetics shows a scaleable throughput. The density gradient step plays a dual role of both filtering out undesired products and concentrating the target structures. The "Mix-and-Match" approach is general, and applies to a broad range of colloidal matter: diverse material compositions (plastics, glasses, and emulsions); a range of colloidal interactions (van der Waals, Coulomb, and DNA hybridization); and a spectrum of sizes (nanoscale to multiple micrometers). Finally, the strength of the method is displayed by producing a monodisperse suspension from a highly polydisperse emulsion. The ability to combine colloids into architectures of hybrid materials has applications in pharmaceuticals, cosmetics, and photonics.


Subject(s)
Chemistry Techniques, Synthetic/methods , Colloids/chemistry , DNA , Emulsions , Polymers
15.
ACS Nano ; 13(7): 7957-7965, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31264845

ABSTRACT

DNA tensegrity triangles self-assemble into rhombohedral three-dimensional crystals via sticky ended cohesion. Crystals containing two-nucleotide (nt) sticky ends (GA:TC) have been reported previously, and those crystals diffracted to 4.9 Å at beamline NSLS-I-X25. Here, we analyze the effect of varying sticky end lengths and sequences as well as the impact of 5'- and 3'-phosphates on crystal formation and resolution. Tensegrity triangle motifs having 1-, 2-, 3-, and 4-nt sticky ends all form crystals. X-ray diffraction data from the same beamline reveal that the crystal resolution for a 1-nt sticky end (G:C) and a 3-nt sticky end (GAT:ATC) were 3.4 and 4.2 Å, respectively. Resolutions were determined from complete data sets in each case. We also conducted trials that examined every possible combination of 1-nucleotide and 2-nucleotide sticky-ended phosphorylated strands and successfully crystallized all 16 possible combinations of strands. We observed the position of the 5'-phosphate on either the crossover (1), helical (2), or central strand (3) affected the resolution of the self-assembled crystals for the 2-turn monomer (3.0 Å for 1-2P-3P) and 2-turn dimer sticky ended (4.1 Å for 1-2-3P) systems. We have also examined the impact of the identity of the base flanking the sticky ends as well as the use of 3'-phosphate. We conclude that crystal resolution is not a simple consequence of the thermodynamics of the direct nucleotide pairing interactions involved in molecular cohesion in this system.


Subject(s)
DNA/chemical synthesis , Crystallization , DNA/chemistry , DNA/isolation & purification , Nucleic Acid Conformation , Particle Size , Surface Properties , Thermodynamics , X-Ray Diffraction
16.
Proc Natl Acad Sci U S A ; 116(21): 10303-10308, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31064872

ABSTRACT

The mixing of a powder of 10- to 50-µm primary particles into a liquid to form a dispersion with the highest possible solid content is a common industrial operation. Building on recent advances in the rheology of such "granular dispersions," we study a paradigmatic example of such powder incorporation: the conching of chocolate, in which a homogeneous, flowing suspension is prepared from an inhomogeneous mixture of particulates, triglyceride oil, and dispersants. Studying the rheology of a simplified formulation, we find that the input of mechanical energy and staged addition of surfactants combine to effect a considerable shift in the jamming volume fraction of the system, thus increasing the maximum flowable solid content. We discuss the possible microscopic origins of this shift, and suggest that chocolate conching exemplifies a ubiquitous class of powder-liquid mixing.

17.
Proc Natl Acad Sci U S A ; 116(6): 1952-1957, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30674667

ABSTRACT

Self-replication and exponential growth are ubiquitous in nature but until recently there were few examples of artificial self-replication. Often replication is a templated process where a parent produces a single offspring, doubling the population in each generation. Many species however produce more than one offspring at a time, enabling faster population growth and higher probability of species perpetuation. We have made a system of cross-shaped origami tiles that yields a number of offspring, four to eight or more, depending on the concentration of monomer units to be assembled. The parent dimer template serves as a seed to crystallize a one-dimensional crystal, a ladder. The ladder rungs are then UV-cross-linked and the offspring are then released by heating, to yield a litter of autonomous daughters. In the complement study, we also optimize the growth conditions to speed up the process and yield a 103 increase in the growth rate for the single-offspring replication system. Self-replication and exponential growth of autonomous motifs is useful for fundamental studies of selection and evolution as well as for materials design, fabrication, and directed evolution. Methods that increase the growth rate, the primary evolutionary drive, not only speed up experiments but provide additional mechanisms for evolving materials toward desired functionalities.


Subject(s)
DNA Replication , DNA/chemistry , Biomechanical Phenomena , Crystallization , DNA, Single-Stranded , Models, Biological , Nanostructures
18.
Sci Rep ; 9(1): 20338, 2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31889165

ABSTRACT

We introduce a hyperuniform-disordered platform for the realization of near-infrared photonic devices on a silicon-on-insulator platform, demonstrating the functionality of these structures in a flexible silicon photonics integrated circuit platform unconstrained by crystalline symmetries. The designs proposed advantageously leverage the large, complete, and isotropic photonic band gaps provided by hyperuniform disordered structures. An integrated design for a compact, sub-volt, sub-fJ/bit, hyperuniform-clad, electrically controlled resonant optical modulator suitable for fabrication in the silicon photonics ecosystem is presented along with simulation results. We also report results for passive device elements, including waveguides and resonators, which are seamlessly integrated with conventional silicon-on-insulator strip waveguides and vertical couplers. We show that the hyperuniform-disordered platform enables improved compactness, enhanced energy efficiency, and better temperature stability compared to the silicon photonics devices based on rib and strip waveguides.

19.
Proc Natl Acad Sci U S A ; 115(37): 9086-9091, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30150392

ABSTRACT

Nature self-assembles functional materials by programming flexible linear arrangements of molecules and then folding them to make 2D and 3D objects. To understand and emulate this process, we have made emulsion droplets with specific recognition and controlled valence. Uniquely monovalent droplets form dimers: divalent lead to polymer-like chains, trivalent allow for branching, and programmed mixtures of different valences enable a variety of designed architectures and the ability to subsequently close and open structures. Our functional building blocks are a hybrid of micrometer-scale emulsion droplets and nanoscale DNA origami technologies. Functional DNA origami rafts are first added to droplets and then herded into a patch using specifically designated "shepherding" rafts. Additional patches with the same or different specificities can be formed on the same droplet, programming multiflavored, multivalence droplets. The mobile patch can bind to a patch on another droplet containing complementary functional rafts, leading to primary structure formation. Further binding of nonneighbor droplets can produce secondary structures, a third step in hierarchical self-assembly. The use of mobile patches rather than uniform DNA coverage has the advantage of valence control at the expense of slow kinetics. Droplets with controlled flavors and valences enable a host of different material and device architectures.

20.
Nature ; 560(7717): E25, 2018 08.
Article in English | MEDLINE | ID: mdl-29946169
SELECTION OF CITATIONS
SEARCH DETAIL