Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Sci Rep ; 14(1): 3134, 2024 Feb 07.
Article En | MEDLINE | ID: mdl-38326537

During the most recent deglaciation, the upwards trend of warmer Northern Hemisphere (NH) temperatures was punctuated by a rapid and intense return to glacial conditions: the Younger Dryas (YD). The end of this event marks the beginning of the Holocene. Using the University of Toronto version of CCSM4, a model of the climate prior to the YD was created with correct boundary conditions. Various amounts of freshwater forcing were then applied to the Beaufort Gyre for forcing intervals ranging from 1 to 125 years. In several cases, this was sufficient to collapse the Atlantic Meridional Overturning Circulation (AMOC) and cause significant cooling over the NH. Crucially, after the forcing was ceased, the AMOC stayed in an off state for approximately a millennium before mounting a rapid recover to pre-YD levels. This recovery, which permanently reduced the extent of NH sea ice, occurred through the mechanism of a Polynya opening in the Irminger Sea during winter and led to a pronounced "overshoot" of the AMOC, during which NH temperatures were higher than before the YD.

2.
Nat Commun ; 14(1): 5697, 2023 Sep 14.
Article En | MEDLINE | ID: mdl-37709741

The winter and summer monsoons in Southeast Asia are important but highly variable sources of rainfall. Current understanding of the winter monsoon is limited by conflicting proxy observations, resulting from the decoupling of regional atmospheric circulation patterns and local rainfall dynamics. These signals are difficult to decipher in paleoclimate reconstructions. Here, we present a winter monsoon speleothem record from Southeast Asia covering the Holocene and find that winter and summer rainfall changed synchronously, forced by changes in the Pacific and Indian Oceans. In contrast, regional atmospheric circulation shows an inverse relation between winter and summer controlled by seasonal insolation over the Northern Hemisphere. We show that disentangling the local and regional signal in paleoclimate reconstructions is crucial in understanding and projecting winter and summer monsoon variability in Southeast Asia.

3.
Proc Natl Acad Sci U S A ; 120(36): e2301954120, 2023 Sep 05.
Article En | MEDLINE | ID: mdl-37639595

Accurate understanding of permafrost dynamics is critical for evaluating and mitigating impacts that may arise as permafrost degrades in the future; however, existing projections have large uncertainties. Studies of how permafrost responded historically during Earth's past warm periods are helpful in exploring potential future permafrost behavior and to evaluate the uncertainty of future permafrost change projections. Here, we combine a surface frost index model with outputs from the second phase of the Pliocene Model Intercomparison Project to simulate the near-surface (~3 to 4 m depth) permafrost state in the Northern Hemisphere during the mid-Pliocene warm period (mPWP, ~3.264 to 3.025 Ma). This period shares similarities with the projected future climate. Constrained by proxy-based surface air temperature records, our simulations demonstrate that near-surface permafrost was highly spatially restricted during the mPWP and was 93 ± 3% smaller than the preindustrial extent. Near-surface permafrost was present only in the eastern Siberian uplands, Canadian high Arctic Archipelago, and northernmost Greenland. The simulations are similar to near-surface permafrost changes projected for the end of this century under the SSP5-8.5 scenario and provide a perspective on the potential permafrost behavior that may be expected in a warmer world.

4.
Nat Commun ; 13(1): 1306, 2022 03 14.
Article En | MEDLINE | ID: mdl-35288559

Despite tectonic conditions and atmospheric CO2 levels (pCO2) similar to those of present-day, geological reconstructions from the mid-Pliocene (3.3-3.0 Ma) document high lake levels in the Sahel and mesic conditions in subtropical Eurasia, suggesting drastic reorganizations of subtropical terrestrial hydroclimate during this interval. Here, using a compilation of proxy data and multi-model paleoclimate simulations, we show that the mid-Pliocene hydroclimate state is not driven by direct CO2 radiative forcing but by a loss of northern high-latitude ice sheets and continental greening. These ice sheet and vegetation changes are long-term Earth system feedbacks to elevated pCO2. Further, the moist conditions in the Sahel and subtropical Eurasia during the mid-Pliocene are a product of enhanced tropospheric humidity and a stationary wave response to the surface warming pattern, which varies strongly with land cover changes. These findings highlight the potential for amplified terrestrial hydroclimate responses over long timescales to a sustained CO2 forcing.


Earth, Planet , Ice Cover , Feedback
5.
Europace ; 23(7): 1016-1023, 2021 07 18.
Article En | MEDLINE | ID: mdl-33782701

AIMS: Atrial fibrillation (AF) is a preventable cause of ischaemic stroke but it is often undiagnosed and undertreated. The utility of smartphone electrocardiogram (ECG) for the detection of AF after ischaemic stroke is unknown. The aim of this study is to determine the diagnostic yield of 30-day smartphone ECG recording compared with 24-h Holter monitoring for detecting AF ≥30 s. METHODS AND RESULTS: In this multicentre, open-label study, we randomly assigned 203 participants to undergo one additional 24-h Holter monitoring (control group, n = 98) vs. 30-day smartphone ECG monitoring (intervention group, n = 105) using KardiaMobile (AliveCor®, Mountain View, CA, USA). Major inclusion criteria included age ≥55 years old, without known AF, and ischaemic stroke or transient ischaemic attack (TIA) within the preceding 12 months. Baseline characteristics were similar between the two groups. The index event was ischaemic stroke in 88.5% in the intervention group and 88.8% in the control group (P = 0.852). AF lasting ≥30 s was detected in 10 of 105 patients in the intervention group and 2 of 98 patients in the control group (9.5% vs. 2.0%; absolute difference 7.5%; P = 0.024). The number needed to screen to detect one AF was 13. After the 30-day smartphone monitoring, there was a significantly higher proportion of patients on oral anticoagulation therapy at 3 months compared with baseline in the intervention group (9.5% vs. 0%, P = 0.002). CONCLUSIONS: Among patients ≥55 years of age with a recent cryptogenic stroke or TIA, 30-day smartphone ECG recording significantly improved the detection of AF when compared with the standard repeat 24-h Holter monitoring.


Atrial Fibrillation , Brain Ischemia , Ischemic Attack, Transient , Stroke , Atrial Fibrillation/diagnosis , Brain Ischemia/diagnosis , Electrocardiography , Electrocardiography, Ambulatory , Humans , Ischemic Attack, Transient/diagnosis , Middle Aged , Smartphone , Stroke/diagnosis
6.
Sci Rep ; 10(1): 13458, 2020 08 10.
Article En | MEDLINE | ID: mdl-32778702

Thermodynamic arguments imply that global mean rainfall increases in a warmer atmosphere; however, dynamical effects may result in more significant diversity of regional precipitation change. Here we investigate rainfall changes in the mid-Pliocene Warm Period (~ 3 Ma), a time when temperatures were 2-3ºC warmer than the pre-industrial era, using output from the Pliocene Model Intercomparison Projects phases 1 and 2 and sensitivity climate model experiments. In the Mid-Pliocene simulations, the higher rates of warming in the northern hemisphere create an interhemispheric temperature gradient that enhances the southward cross-equatorial energy flux by up to 48%. This intensified energy flux reorganizes the atmospheric circulation leading to a northward shift of the Inter-Tropical Convergence Zone and a weakened and poleward displaced Southern Hemisphere Subtropical Convergences Zones. These changes result in drier-than-normal Southern Hemisphere tropics and subtropics. The evaluation of the mid-Pliocene adds a constraint to possible future warmer scenarios associated with differing rates of warming between hemispheres.

...