Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters











Publication year range
1.
An Acad Bras Cienc ; 95(1): e20220177, 2023.
Article in English | MEDLINE | ID: mdl-37132747

ABSTRACT

Sudden failure of a mine tailing dam occurred in the municipality of Brumadinho, Minas Gerais, Brazil, on January 25, 2019. Approximately 12 million cubic meters of mine tailings discharged into the Paraopeba River, producing strong environmental and societal impacts, mainly due to a massive increase in turbidity (occasionally exceeding 50,000 Nephelometric Turbidity Units [NTU] (CPRM 2019). Remote sensing is a well-established tool for quantifying spatial patterns of turbidity. However, a few empirical models have been developed to map turbidity in rivers impacted by mine tailings. Thus, this study aimed to develop an empirical model capable of producing turbidity estimates based on images from the Sentinel-2 satellite, using the Paraopeba River as the study area. We found that river turbidity was most strongly correlated with the sensor's near-infrared band (NIR) (band 8). Thus, we built an empirical single-band model using an exponential function with an (R2 of 0.91) to characterize the spatial-temporal variation of turbidity based on satellite observations of NIR reflectance. Although the role of discharged tailings in the seasonal variation of turbidity is not well understood, the proposed model enabled the monitoring of turbidity variations in the Paraopeba River associated with seasonal resuspension or deposition of mine tailings. Our study shows the capability of single-band models to quantify seasonal variations in turbidity in rivers impacted by mine tailing pollution.


Subject(s)
Rivers , Water Pollutants, Chemical , Environmental Pollution , Cities , Brazil , Environmental Monitoring , Water Pollutants, Chemical/analysis
2.
Metallomics ; 15(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-36914218

ABSTRACT

This work aims to evaluate the size and lability of Cu and Zn bound to proteins in the cytosol of fish liver of Oreochromis niloticus by employing solid-phase extraction (SPE), diffusive gradients in thin films (DGT), and ultrafiltration (UF). SPE was carried out using Chelex-100. DGT containing Chelex-100 as binding agent was employed. Analyte concentrations were determined by ICP-MS. Total Cu and Zn concentrations in cytosol (1 g of fish liver in 5 ml of Tris-HCl) ranged from 39.6 to 44.3 ng ml-1 and 1498 to 2106 ng ml-1, respectively. Data from UF (10-30 kDa) suggested that Cu and Zn in cytosol were associated with ∼70% and 95%, respectively, with high-molecular-weight proteins. Cu-metallothionein was not selectively detected (although 28% of Cu was associated with low-molecular-weight proteins). However, information about the specific proteins in the cytosol will require coupling UF with organic mass spectrometry. Data from SPE showed the presence of labile Cu species of ∼17%, while the fraction of labile Zn species was >55%. However, data from DGT suggested a fraction of labile Cu species only of 7% and a labile Zn fraction of 5%. This data, as compared with previous data from literature, suggests that the DGT technique gave a more plausible estimation of the labile pool of Zn and Cu in cytosol. The combination of results from UF and DGT is capable of contributing to the knowledge about the labile and low-molecular pool of Cu and Zn.


Subject(s)
Cichlids , Water Pollutants, Chemical , Animals , Ultrafiltration/methods , Cytosol , Zinc/analysis , Liver/chemistry , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis
3.
Int J Cardiol ; 363: 240-246, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35750302

ABSTRACT

During the COVID-19 pandemic, reductions in heart failure (HF) hospitalizations have been widely reported, and there is an urgent need to understand how HF care has been reorganized in countries with different infection levels, vaccination rates and healthcare services. The OPTIMIZE Heart Failure Care program has a global network of investigators in 42 countries, with first-hand experience of the impact of the pandemic on HF management in different care settings. The national coordinators were surveyed to assess: 1) the challenges of the COVID-19 pandemic for continuity of HF care, from both a hospital and patient perspective; 2) the organizational changes enacted to ensure continued HF care; and 3) lessons learned for the future of HF care. Contributions were obtained from 37 national coordinators in 29 countries. We summarize their input, highlighting the issues raised and using the example of three very different settings (Italy, Brazil, and Taiwan) to illustrate the similarities and differences across the OPTIMIZE program.


Subject(s)
COVID-19 , Heart Failure , Brazil , COVID-19/epidemiology , Heart Failure/diagnosis , Heart Failure/epidemiology , Heart Failure/therapy , Humans , Pandemics , Surveys and Questionnaires
4.
Chemosphere ; 286(Pt 2): 131752, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34426136

ABSTRACT

Over recent decades, hydrocarbon concentrations have been augmented in soil and water, mainly derived from accidents or operations that input crude oil and petroleum into the environment. Different techniques for remediation have been proposed and used to mitigate oil contamination. Among the available environmental recovery approaches, bioremediation stands out since these hydrocarbon compounds can be used as growth substrates for microorganisms. In turn, microorganisms can play an important role with significant contributions to the stabilization of impacted areas. In this review, we present the current knowledge about responses from natural microbial communities (using DNA barcoding, multiomics, and functional gene markers) and bioremediation experiments (microcosm and mesocosm) conducted in the presence of petroleum and chemical dispersants in different samples, including soil, sediment, and water. Additionally, we present metabolic mechanisms for aerobic/anaerobic hydrocarbon degradation and alternative pathways, as well as a summary of studies showing functional genes and other mechanisms involved in petroleum biodegradation processes.


Subject(s)
Microbiota , Petroleum Pollution , Petroleum , Soil Pollutants , Biodegradation, Environmental , Hydrocarbons , Petroleum Pollution/analysis , Soil Microbiology , Soil Pollutants/analysis
5.
Talanta ; 238(Pt 2): 123044, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34801901

ABSTRACT

The Diffusive Gradients in Thin-films (DGT) technique represents an ideal tool for monitoring water quality of inorganic species in systems with a high flow such as rivers, streams, lakes and seas. However, in low-flow systems (non-turbulent waters), the influence of a diffusive boundary layer (DBL) formed on the surface of the DGT device has been observed, which can lead to erroneous measurements by DGT. Therefore, the use of DGT in wells for groundwater monitoring is still very limited until now. In this sense, the present study evaluates the applicability of the DGT technique in non-turbulent and low-flow water systems. We propose a new way to calculate the DBL with the objective to carry out a robust DGT analysis in environmental monitoring wells. For this purpose, DGT devices with different diffusive gel thicknesses were deployed in an experimental set-up simulating a groundwater monitoring well. A DBL thickness (for each element) was calculated from the slopes of the linear regressions between the DGT accumulated mass of metal and the deployment time (4, 8, 12, 24 and 48 h) for each of the two diffusive gel thicknesses. The mean DBL thickness (averaging the individual DBL thicknesses calculated from the slopes) was 0.06 cm. The concentrations of the analysed elements were corrected with this DBL with the result that the metal concentrations measured by DGT improved and were highly approximated to their actual total values in this non-complexing medium.


Subject(s)
Groundwater , Water Pollutants, Chemical , Diffusion , Environmental Monitoring , Lakes , Rivers , Water Pollutants, Chemical/analysis
6.
Environ Sci Pollut Res Int ; 28(40): 57149-57165, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34085201

ABSTRACT

Mine restoration is a long and ongoing process, requiring careful management, which must be informed by site-specific, geochemical risk assessment. Paired topsoil and tree core samples from 4 sites within the uranium mining complex of INB Caldas in Minas Gerais (Brazil) were collected. Soil samples were analysed for their total content of Co, Fe, Pb, U and Zn by XRF, and subsequently, the potential environmental bioavailability of these metals were investigated by DGT and pore water analysis. In addition, results were compared with metal concentrations obtained by Tree Coring from the forest vegetation. In all sampling areas, mean total concentrations of U (Ctot. = 100.5 ± 66.5 to 129.6 ± 57.1 mg kg-1), Pb (Ctot. = 30.8 ± 12.7 to 90.8 ± 90.8 mg kg-1), Zn (Ctot. = 91.5 ± 24.7 to 99.6 ± 10.3 mg kg-1) and Co (Ctot. = 73.8 ± 25.5 to 119.7 ± 26.4 mg kg-1) in soils exceeded respective quality reference values. Study results suggest that AMD caused the increase of labile concentrations of Zn in affected soils. The high lability of the elements Pb (R = 62 ± 34 to 81 ± 29%), U (R = 57 ± 20 to 77 ± 28%) and Zn (R = 21 ± 25 to 34 ± 31%) in soils together with high bioconcentration factors found in wood samples for Pb (BCF = 0.0004 ± 0.0003 to 0.0026 ± 0.0033) and Zn (BCF = 0.012 ± 0.013 to 0.025 ± 0.021) indicated a high toxic potential of these elements to the biota in the soils of the study site. The combination of pore water and DGT analysis with Tree Coring showed to be a useful approach to specify the risk of metal polluted soils. However, the comparison of the results from DGT and Tree Coring could not predict the uptake of metals into the xylems of the sampled tree individuals.


Subject(s)
Metals, Heavy , Soil Pollutants , Uranium , Biological Availability , Environmental Monitoring , Humans , Lead , Metals, Heavy/analysis , Mining , Soil , Soil Pollutants/analysis , Uranium/analysis , Zinc/analysis
7.
Sci Total Environ ; 757: 143917, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33321338

ABSTRACT

On January 25, 2019, a tailings dam at the Córrego do Feijão iron ore mine (Brumadinho, Minas Gerais, southern Brazil) ruptured and released ~12 million m3 of mine tailings into the Paraopeba River, which is an important source of drinking water to a populous region. While water potability due to a strong increase in turbidity has been well documented, possible effects of metal contamination are yet to be addressed. We investigated the speciation of metals in the river water and desorption of metals from sediments as a means of supporting risk assessment, using the diffusive gradient in thin films (DGT) technique, desorption experiments and chemical speciation calculations. The results of the in-situ DGT monitoring revealed that the labile concentrations of metals were low in relation to the respective total and dissolved concentrations. Chemical speciation calculations showed that the heavy metals were not stable in the Paraopeba River. The desorption experiments suggested that sediments may release a limited amount of As and Cu, but large amounts of Mn into the river water. Higher concentrations of Fe and Mn indicated a possible association with the impact of mine tailings. In general, the total metal concentrations during the rainy season were higher than those during the dry season, whereas the reverse was generally the case for labile forms. This pattern reveals that metal speciation is intrinsically dependent on the seasonal variation of the hydrological conditions.

8.
Electron. j. biotechnol ; Electron. j. biotechnol;47: 89-99, sept. 2020. ilus, tab, graf
Article in English | LILACS | ID: biblio-1253101

ABSTRACT

BACKGROUND: Koelreuteria henryi Dummer is an indigenous plant in Taiwan. The species has been used in traditional folk medicine for the promotion of liver functions and for treating malaria and urethritis. The present study investigated the antioxidant activity of the flower extract of Koelreuteria henryi Dummer. The extraction conditions were optimized by the contents of total phenolic acids and total flavonoids, and antioxidant activity assays. Moreover, an in vitro study for investigating antioxidant activity of K. henryi flower extract was demonstrated by hydrogen peroxide (H2O2)-induced apoptosis. RESULTS: K. henryi flower extracted for 150 min showed high contents of total phenolic acids and total flavonoids. In an in vitro model, L929 cells were pretreated with K. henryi flower extract, and then treated with H2O2 to induce oxidative damage. Results demonstrated that H2O2-induced apoptosis was inhibited by the treatment of 200 µg/ml K. henryi flower extract through the mitochondria-mediated pathway and mitogen-activated protein kinase (MAPK) pathway. The caspase 8/9 activity and expression of p-p38 and pERK were repressed by K. henryi flower extract. In addition, the prevention of H2O2-induced apoptosis by K. henryi flower extract activated the nuclear factor-erythroid 2-related factor (Nrf2) stress response pathway to transcript heme oxygenase 1 (HO-1). Also, K. henryi flower extract prevented H2O2-induced apoptosis through HO-1 production, as evident by the use of HO-1 inhibitor. CONCLUSIONS: The present study demonstrated that K. henryi flower extract could inhibit the H2O2-induced apoptosis in L929 cells through the activation of the Nrf2/HO-1 pathway.


Subject(s)
Plant Extracts/pharmacology , Oxidative Stress/drug effects , Sapindaceae/chemistry , Antioxidants/pharmacology , Flavonoids/analysis , Blotting, Western , Apoptosis , Flowers/chemistry , Heme Oxygenase-1 , NF-E2-Related Factor 2 , Caspase 8 , Hydrogen Peroxide
9.
J Contam Hydrol ; 234: 103684, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32711211

ABSTRACT

Release of benzene, toluene, ethylbenzene, and xylene (BTEX) as components of the light non-aqueous phase liquids (LNAPL) contaminates soil and groundwater. Assessing the mechanisms of degradation and mineralization of BTEX in groundwater helps understand the migration of the dissolved plume, enabling the reduction of risks to humans. Here, we studied the fate of ethylbezene, m,p-xylenes and o-xylenes and the accompanying formation of methane in a Cenozoic lateritic aquifer in Brazil by compound-specific carbon stable isotope analysis (CSIA), to gain insights into the complex dynamics of release and biodegradation of BTEX in the LNAPL source zone. The enrichment of ∂13C in aromatic compounds dissolved in groundwater compared to the corresponding compounds in LNAPL indicate that CSIA can provide valuable information regarding biodegradation. The isotopic analysis of methane provides direct indication of oxidation mediated by aquifer oxygenation. The ∂13C-CO2 values indicate methanogenesis prevailing at the border and aerobic biodegradation in the center of the LNAPL source zone. Importantly, the isotopic results allowed major improvements in the previously developed conceptual model, supporting the existence of oxic and anoxic environments within the LNAPL source zone.


Subject(s)
Water Pollutants, Chemical , Benzene/analysis , Benzene Derivatives/analysis , Biodegradation, Environmental , Brazil , Humans , Hydrocarbons , Toluene , Water Pollutants, Chemical/analysis , Xylenes
10.
Electron. j. biotechnol ; Electron. j. biotechnol;45: 38-45, May 15, 2020. ilus, graf, tab
Article in English | LILACS | ID: biblio-1177420

ABSTRACT

BACKGROUND: Taraxacum species (commonly known as dandelion) used as herbal medicine have been reported to exhibit an antiproliferative effect on hepatoma cells and antitumor activity in non-small-cell lung cancer cells. Although several investigations have demonstrated the safety of Taraxacum officinale, the safety of tissue-cultured plants of T. formosanum has not been assessed so far. Therefore, the present study examines the safety of the water extract of the entire plant of tissue cultured T. formosanum based on acute and subacute toxicity tests in rats, as well as the Ames tests. RESULTS: No death or toxicity symptoms were observed in the acute and subacute tests. The results of the acute test revealed that the LD50 (50% of lethal dose) value of the T. formosanum water extract for rats exceeded 5 g/kg bw. No abnormal changes in the body weight, weekly food consumption, organ weight, or hematological, biochemical, and morphological parameters were observed in the subacute toxicity test. Thus, the no observed adverse effect level (NOAEL) of T. formosanum water extract was estimated to be higher than 2.0 g/kg. Finally, the results of the Ames test revealed that T. formosanum water extract was not genotoxic at any tested concentration to any of five Salmonella strains. CONCLUSIONS: The water extract of tissue-cultured T. formosanum was non-toxic to rats in acute and subacute tests and exhibited no genotoxicity to five Salmonella strains.


Subject(s)
Animals , Rats , Plant Extracts/toxicity , Taraxacum/toxicity , Tissue Culture Techniques/methods , Safety , Flavonoids/analysis , Chromatography, High Pressure Liquid , Urinalysis , Rats, Sprague-Dawley , Phenol/analysis , Toxicity Tests, Acute , Herbal Medicine , Taraxacum/chemistry , Serum , Cell Proliferation/drug effects , Toxicity Tests, Subacute , Mutagenicity Tests
11.
Sci Total Environ ; 705: 135845, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31972920

ABSTRACT

Covering a plateau area of approximately 125,000 km2, the Urucuia Aquifer System (UAS) represents a national strategic water resource in the drought-stricken Northeastern part of Brazil. Variations in terrestrial water storage (TWS) extracted using a three-model-ensemble from the Gravity Recovery and Climate Experiment (GRACE) mission showed a negative balance equal to water stress. Monthly GRACE-derived water storage changes from 2002 to 2014 were compared with those derived from an independent hydrologic water balance of the region using in situ measurements and estimated evapotranspiration rates. Trend analyses revealed a TWS depletion rate of 6.5 ±â€¯2.6 mm yr-1, but no significant decline in precipitation as observed from available data records. Water storage depletion was found to be driven by anthropogenic impacts rather than by natural climatic variability. The obtained results demonstrate that GRACE is able to adequately capture water storage changes at the subregional scale, particularly during dry seasons.

12.
Ground Water ; 58(3): 432-440, 2020 05.
Article in English | MEDLINE | ID: mdl-31187874

ABSTRACT

This study presents an extension of the concept of "quasi-saturation" to a quasi-saturated layer, defined as the uppermost dynamic portion of the saturated zone subject to water table fluctuations. Entrapped air here may cause substantial reductions in the hydraulic conductivity (K) and fillable pore water. Air entrapment is caused by a rising water table, usually as a result of groundwater recharge. The most significant effects of entrapped air are recharge overestimation based on methods that use specific yield (Sy ), such as the water table fluctuation method (WTF), and reductions in K values. These effects impact estimation of fluid flow velocities and contaminant migration rates in groundwater. In order to quantify actual groundwater recharge rates and the effects of entrapped air, numerical simulations with the FEFLOW (Version 7.0) groundwater flow model were carried out using a quasi-saturated layer for a pilot area in Rio Claro, Brazil. The calculated recharge rate represented 16% of the average precipitation over an 8-year period, approximately half of estimates using the WTF method. Air entrapment amounted to a fillable porosity of 0.07, significant lower that the value of 0.17 obtained experimentally for Sy . Numerical results showed that the entrapped air volume in the quasi-saturated layer can be very significant (0.58 of the air fraction) and hence can significantly affect estimates of groundwater recharge and groundwater flow rates near the water table.


Subject(s)
Groundwater , Brazil , Porosity , Water , Water Movements
13.
Environ Sci Pollut Res Int ; 24(25): 20616-20625, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28712080

ABSTRACT

The toxic metal lead (Pb) can be harmful to human health in various manners, but is also considered as a distinguished tracer of environmental pollution since the relative abundance of its four stable isotopes with the atomic masses of 204, 206, 207, and 208 varies with the emission source. This study is focused on the Pb concentrations and isotope ratios in the particulate matter of the Brazilian city of Goiânia in order to determine the main Pb emission sources. Particulate matter samples were collected on clean Teflon filters during rainy and dry season in 2014 in the center of Goiânia city near main roads with a high traffic volume. Pb concentrations as well as stable Pb isotope ratios of the particulate matter samples were analyzed by inductively coupled plasma-mass spectrometry. To apply this analytical technique successfully, it was necessary to optimize parameters in case of acquisition time, detector dead time, and mass discrimination, which affect the measurement accuracy and precision. Results showed that Pb concentrations in Goiânia were different between rainy and dry season. Pb concentrations showed higher values and less variation in dry season than in rainy season. Pb isotope ratios demonstrated significant variations between dry and rainy season. An enrichment of 206Pb isotopes related to 207Pb and 208Pb isotopes was observed in dry season. However, the comparison of the obtained isotopic Pb signature with data of potential Pb sources from previous studies indicated that traffic-related sources should be considered as main Pb source in the particulate matter of Goiânia. These assumptions were incorporated by the calculation of the contribution factor of Pb coming from traffic-related sources by applying binary mixing equations.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Lead/analysis , Particulate Matter/analysis , Brazil , Cities , Humans , Isotopes/analysis , Mass Spectrometry , Seasons
14.
Isotopes Environ Health Stud ; 53(5): 518-538, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28446033

ABSTRACT

Based on Global Network Isotopes in Precipitation (GNIP) isotopic data set, a review of the spatial and temporal variability of δ18O and δ2H in precipitation was conducted throughout central and eastern Brazil, indicating that dynamic interactions between Intertropical and South Atlantic Convergence Zones, Amazon rainforest, and Atlantic Ocean determine the variations on the isotopic composition of precipitation over this area. Despite the seasonality and latitude effects observed, a fair correlation with precipitation amount was found. In addition, Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) air mass back trajectories were used to quantify the factors controlling daily variability in stable isotopes in precipitation. Through a linear multiple regression analysis, it was observed that temporal variations were consistent with the meteorological parameters derived from HYSPLIT, particularly precipitation amount along the trajectory and mix depth, but are not dependent on vapour residence time in the atmosphere. These findings also indicate the importance of convective systems to control the isotopic composition of precipitation in tropical and subtropical regions.


Subject(s)
Environmental Monitoring , Rain , Air Movements , Brazil , Deuterium , Oxygen Isotopes , Seasons
15.
J Contam Hydrol ; 198: 37-47, 2017 03.
Article in English | MEDLINE | ID: mdl-28126246

ABSTRACT

Mass transfer of light non-aqueous phase liquids (LNAPLs) trapped in porous media is a complex phenomenon. Water table fluctuations have been identified as responsible for generating significant variations in the concentration of dissolved hydrocarbons. Based on field evidence, this work presents a conceptual model and a numerical solution for mass transfer from entrapped LNAPL to groundwater controlled by both LNAPL saturation and seasonal water table fluctuations within the LNAPL smear zone. The numerical approach is capable of reproducing aqueous BTEX concentration trends under three different scenarios - water table fluctuating within smear zone, above the smear zone and partially within smear zone, resulting in in-phase, out-of-phase and alternating in-phase and out-of-phase BTEX concentration trend with respect to water table oscillation, respectively. The results demonstrate the model's applicability under observed field conditions and its ability to predict source zone depletion.


Subject(s)
Benzene Derivatives/analysis , Groundwater/analysis , Hydrocarbons/analysis , Water Pollutants, Chemical/analysis , Brazil , Environmental Monitoring , Models, Theoretical , Porosity
16.
Chemosphere ; 169: 249-256, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27880923

ABSTRACT

The exchange membranes P81 and DE81 and Chelex-100 resin were used to perform in situ speciation of uranium in treated acid mine drainage at the Osamu Utsumi mining site, Poços de Caldas city, Southeast Brazil. To investigate possible chemical modifications in the samples during analysis, the three ligands were deployed in situ and in a laboratory (in lab). The results obtained in situ were also compared to a speciation performed using Visual MINTEQ software. Chelex-100 retained total labile U for a period of up to 48 h. The labile U fraction determined by Chelex 100 ranged from 107 ± 6% to 147 ± 44% in situ and from 115 ± 22% to 191 ± 5% in lab. DE81 retained anionic U species up to 8 h, with labile fractions ranging from 37 ± 2% to 76 ± 3% in situ and 34 ± 12% to 180 ± 17% in lab. P81 exhibited a lower efficiency in retaining U species, with concentrations ranging from 6± 2% to 19± 2% in situ and 3± 2% to 18± 2% in lab. The speciation obtained from MINTEQ suggests that the major U species were UO2OH+, UO2(OH)3-, UO2(OH)2(aq), Ca2UO2(CO3)3(aq), CaUO2(CO3)32-, UO2(CO3)22-, and UO2(CO3)34-. This result is in accordance with the results obtained in situ. Differences concerning speciation and the total and soluble U concentrations were observed between the deployments performed in situ and in the laboratory, indicating that U speciation must be performed in situ.


Subject(s)
Mining , Radiation Monitoring/methods , Soil Pollutants, Radioactive/analysis , Uranium/analysis , Brazil , Resins, Synthetic
17.
Anal Chim Acta ; 950: 32-40, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27916127

ABSTRACT

Amberlite IRA-410 anionic exchange resin was evaluated as the binding layer for sampling V(V) by using Diffusive Gradients in Thin Films (DGT). V(V) was determined by inductively coupled plasma mass spectrometry (ICP-MS). Mass vs. time DGT deployments (ionic strength = 0.03 mol L-1 NaNO3, pH = 5.6 and T = 23.5 ± 0.5 °C) was characterized by excellent linear relationship (R2 = 0.9993) and a significant retention of V(V) by the binding layer. An exchange capacity of at least 40 µg V g-1 resin was achieved for the proposed binding layer. The diffusion coefficient obtained (7.13 ± 0.6 10-6 cm2 s-1) agrees with the literature. The accumulation rate of V(V) was not significantly affected by ionic strength of solutions up to 0.03 mol L-1 and for the entire studied pH range (from 3 to 9). Furthermore, when comparing the concentrations obtained using IRA-410-DGT and those obtained by direct measurement of the solution concentrations, the proposed approach provided a reduction of the 35Cl16O interference on V(V) determination by ICP-MS. Determination of V in normal mode (without collision cell) in solutions containing analyte:Cl- concentration ratio up to 1:500,000 was not affected by interference of 35Cl16O+ polyatomic ion even when normal mode ICP-MS was used. Potential interfering ions on sampling V(V) by DGT (PO43- and SO42-) showed no significant effects on the accumulation rate of V(V). Laboratory tests performed using synthetic samples, natural freshwater and acid drainage water showed an excellent performance (recoveries from 93% to 110%). For in situ deployment, measurements of V(V) by the proposed approach was not significantly different (95.5%) from the value of dissolved V concentration.

18.
Ground Water ; 54(1): 82-91, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25818697

ABSTRACT

Detailed monitoring of the groundwater table can provide important data about both short- and long-term aquifer processes, including information useful for estimating recharge and facilitating groundwater modeling and remediation efforts. In this paper, we presents results of 4 years (2002 to 2005) of monitoring groundwater water levels in the Rio Claro Aquifer using observation wells drilled at the Rio Claro campus of São Paulo State University in Brazil. The data were used to follow natural periodic fluctuations in the water table, specifically those resulting from earth tides and seasonal recharge cycles. Statistical analyses included methods of time-series analysis using Fourier analysis, cross-correlation, and R/S analysis. Relationships could be established between rainfall and well recovery, as well as the persistence and degree of autocorrelation of the water table variations. We further used numerical solutions of the Richards equation to obtain estimates of the recharge rate and seasonable groundwater fluctuations. Seasonable soil moisture transit times through the vadose zone obtained with the numerical solution were very close to those obtained with the cross-correlation analysis. We also employed a little-used deep drainage boundary condition to obtain estimates of seasonable water table fluctuations, which were found to be consistent with observed transient groundwater levels during the period of study.


Subject(s)
Groundwater/analysis , Models, Theoretical , Water Wells , Brazil , Environmental Monitoring/methods , Rain , Seasons , Tidal Waves
20.
Environ Monit Assess ; 186(2): 961-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24052239

ABSTRACT

Studies concerning the lability and bioavailability of trace metals have played a prominent role in the search for contamination of water resources. This work describes the first application yet of the diffusive gradients in thin films technique (DGT) to the determination of the fraction of free plus labile metals in waters from the Amazon Basin. Due to the complexity of the use of DGT for samples with low ionic strength and high organic matter content (characteristic of Amazonian rivers), a new analytical procedure was developed. The method is based on the determinations of apparent diffusion coefficients (Dap) in the laboratory, by performing deployments in samples collected in the corresponding sites of study. The Dap thereby determined is then used for in situ measurements. The suitability of the proposed approach for determination of labile Al, Cd, Co, Cu, Mn, Ni, and Zn in the Amazon River and Rio Negro (English: Black River) was evaluated. Except for Co, Mn (in a deployment at Rio Negro), Ni and Zn (in a deployment at Amazon River), labile in situ measurements were lower or similar to dissolved concentrations, indicating suitability of the proposed approach.


Subject(s)
Environmental Monitoring/methods , Metals/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Aluminum/analysis , Brazil , Cadmium/analysis , Cobalt/analysis , Copper/analysis , Diffusion , Manganese/analysis , Nickel/analysis , Zinc/analysis
SELECTION OF CITATIONS
SEARCH DETAIL