Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
EBioMedicine ; 105: 105185, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38848648

ABSTRACT

BACKGROUND: In order to prevent the emergence and spread of future variants of concern of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), developing vaccines capable of stopping transmission is crucial. The SARS-CoV-2 vaccine NDV-HXP-S can be administered live intranasally (IN) and thus induce protective immunity in the upper respiratory tract. The vaccine is based on Newcastle disease virus (NDV) expressing a stabilised SARS-CoV-2 spike protein. NDV-HXP-S can be produced as influenza virus vaccine at low cost in embryonated chicken eggs. METHODS: The NDV-HXP-S vaccine was genetically engineered to match the Omicron variants of concern (VOC) BA.1 and BA.5 and tested as an IN two or three dose vaccination regimen in female mice. Furthermore, female mice intramuscularly (IM) vaccinated with mRNA-lipid nanoparticles (LNPs) were IN boosted with NDV-HXP-S. Systemic humoral immunity, memory T cell responses in the lungs and spleens as well as immunoglobulin A (IgA) responses in distinct mucosal tissues were characterised. FINDINGS: NDV-HXP-S Omicron variant vaccines elicited high mucosal IgA and serum IgG titers against respective SARS-CoV-2 VOC in female mice following IN administration and protected against challenge from matched variants. Additionally, antigen-specific memory B cells and local T cell responses in the lungs were induced. Host immunity against the NDV vector did not interfere with boosting. Intramuscular vaccination with mRNA-LNPs was enhanced by IN NDV-HXP-S boosting resulting in improvement of serum neutralization titers and induction of mucosal immunity. INTERPRETATION: We demonstrate that NDV-HXP-S Omicron variant vaccines utilised for primary immunizations or boosting efficiently elicit humoral and cellular immunity. The described induction of systemic and mucosal immunity has the potential to reduce infection and transmission. FUNDING: This work was partially funded by the NIAIDCenters of Excellence for Influenza Research and Response (CEIRR) and by the NIAID Collaborative Vaccine Innovation Centers and by institutional funding from the Icahn School of Medicine at Mount Sinai. See under Acknowledgements for details.


Subject(s)
Administration, Intranasal , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunity, Humoral , Immunity, Mucosal , Newcastle disease virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Female , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Mice , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , COVID-19/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Newcastle disease virus/immunology , Newcastle disease virus/genetics , Immunity, Cellular , Immunoglobulin A/immunology , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Antibodies, Neutralizing/immunology , Vaccination/methods , Humans , Liposomes
2.
bioRxiv ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38586014

ABSTRACT

Current COVID-19 mRNA vaccines delivered intramuscularly (IM) induce effective systemic immunity, but with suboptimal immunity at mucosal sites, limiting their ability to impart sterilizing immunity. There is strong interest in rerouting immune responses induced in the periphery by parenteral vaccination to the portal entry site of respiratory viruses, such as SARS-CoV-2, by mucosal vaccination. We previously demonstrated the combination adjuvant, NE/IVT, consisting of a nanoemulsion (NE) and an RNA-based RIG-I agonist (IVT) induces potent systemic and mucosal immune responses in protein-based SARS-CoV-2 vaccines administered intranasally (IN). Herein, we demonstrate priming IM with mRNA followed by heterologous IN boosting with NE/IVT adjuvanted recombinant antigen induces strong mucosal and systemic antibody responses and enhances antigen-specific T cell responses in mucosa-draining lymph nodes compared to IM/IM and IN/IN prime/boost regimens. While all regimens induced cross-neutralizing antibodies against divergent variants and sterilizing immunity in the lungs of challenged mice, mucosal vaccination, either as homologous prime/boost or heterologous IN boost after IM mRNA prime was required to impart sterilizing immunity in the upper respiratory tract. Our data demonstrate the benefit of hybrid regimens whereby strong immune responses primed via IM vaccination are rerouted by IN vaccination to mucosal sites to provide optimal protection to SARS-CoV-2.

3.
J Immunol ; 212(8): 1307-1318, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38416036

ABSTRACT

Plitidepsin is a host-targeted compound known for inducing a strong anti-SARS-CoV-2 activity, as well as for having the capacity of reducing lung inflammation. Because IL-6 is one of the main cytokines involved in acute respiratory distress syndrome, the effect of plitidepsin in IL-6 secretion in different in vitro and in vivo experimental models was studied. A strong plitidepsin-mediated reduction of IL-6 was found in human monocyte-derived macrophages exposed to nonproductive SARS-CoV-2. In resiquimod (a ligand of TLR7/8)-stimulated THP1 human monocytes, plitidepsin-mediated reductions of IL-6 mRNA and IL-6 levels were also noticed. Additionally, although resiquimod-induced binding to DNA of NF-κB family members was unaffected by plitidepsin, a decrease in the regulated transcription by NF-κB (a key transcription factor involved in the inflammatory cascade) was observed. Furthermore, the phosphorylation of p65 that is required for full transcriptional NF-κB activity was significantly reduced by plitidepsin. Moreover, decreases of IL-6 levels and other proinflammatory cytokines were also seen in either SARS-CoV-2 or H1N1 influenza virus-infected mice, which were treated at low enough plitidepsin doses to not induce antiviral effects. In summary, plitidepsin is a promising therapeutic agent for the treatment of viral infections, not only because of its host-targeted antiviral effect, but also for its immunomodulatory effect, both of which were evidenced in vitro and in vivo by the decrease of proinflammatory cytokines.


Subject(s)
Depsipeptides , Influenza A Virus, H1N1 Subtype , NF-kappa B , Humans , Animals , Mice , NF-kappa B/metabolism , Interleukin-6/pharmacology , Antiviral Agents/pharmacology , Immunologic Factors/pharmacology , Cytokines/metabolism , SARS-CoV-2/metabolism
4.
PLoS Pathog ; 20(1): e1011805, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38198521

ABSTRACT

Hybrid immunity (vaccination + natural infection) to SARS-CoV-2 provides superior protection to re-infection. We performed immune profiling studies during breakthrough infections in mRNA-vaccinated hamsters to evaluate hybrid immunity induction. The mRNA vaccine, BNT162b2, was dosed to induce binding antibody titers against ancestral spike, but inefficient serum virus neutralization of ancestral SARS-CoV-2 or variants of concern (VoCs). Vaccination reduced morbidity and controlled lung virus titers for ancestral virus and Alpha but allowed breakthrough infections in Beta, Delta and Mu-challenged hamsters. Vaccination primed for T cell responses that were boosted by infection. Infection back-boosted neutralizing antibody responses against ancestral virus and VoCs. Hybrid immunity resulted in more cross-reactive sera, reflected by smaller antigenic cartography distances. Transcriptomics post-infection reflects both vaccination status and disease course and suggests a role for interstitial macrophages in vaccine-mediated protection. Therefore, protection by vaccination, even in the absence of high titers of neutralizing antibodies in the serum, correlates with recall of broadly reactive B- and T-cell responses.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Humans , BNT162 Vaccine , Breakthrough Infections , COVID-19/prevention & control , Mesocricetus , Antibodies, Neutralizing , Postoperative Complications , RNA, Messenger/genetics , Immunity , Antibodies, Viral , Vaccination
5.
J Leukoc Biol ; 116(2): 224-243, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38289826

ABSTRACT

Eosinophils are a critical type of immune cell and central players in type 2 immunity. Existing literature suggests that eosinophils also can play a role in host antiviral responses, typically type 1 immune events, against multiple respiratory viruses, both directly through release of antiviral mediators and indirectly through activation of other effector cell types. One way to prime host immune responses toward effective antiviral responses is through vaccination, where typically a type 1-skewed immunity is desirable in the context of intracellular pathogens like respiratory viruses. In the realm of breakthrough respiratory viral infection in vaccinated hosts, an event in which virus can still establish productive infection despite preexisting immunity, eosinophils are most prominently known for their link to vaccine-associated enhanced respiratory disease upon natural respiratory syncytial virus infection. This was observed in a pediatric cohort during the 1960s following vaccination with formalin-inactivated respiratory syncytial virus. More recent research has unveiled additional roles of the eosinophil in respiratory viral infection and breakthrough infection. The specific contribution of eosinophils to the quality of vaccine responses, vaccine efficacy, and antiviral responses to infection in vaccinated hosts remains largely unexplored, especially regarding their potential roles in protection. On the basis of current findings, we will speculate upon the suggested function of eosinophils and consider the many potential ways by which eosinophils may exert protective and pathological effects in breakthrough infections. We will also discuss how to balance vaccine efficacy with eosinophil-related risks, as well as the use of eosinophils and their products as potential biomarkers of vaccine efficacy or adverse events.


Subject(s)
Eosinophils , Respiratory Tract Infections , Vaccination , Humans , Eosinophils/immunology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/prevention & control , Animals , Viral Vaccines/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Virus Diseases/immunology , Virus Diseases/prevention & control , Breakthrough Infections
6.
Small ; 20(10): e2306892, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37867244

ABSTRACT

Poly(I:C) is a synthetic analogue of dsRNA capable of activating both TLR3 and RLRs, such as MDA-5 and RIG-I, as pathogen recognition receptors. While poly(I:C) is known to provoke a robust type I IFN, type III IFN, and Th1 cytokine response, its therapeutic use as a vaccine adjuvant is limited due to its vulnerability to nucleases and poor uptake by immune cells. is encapsulated poly(I:C) into lipid nanoparticles (LNPs) containing an ionizable cationic lipid that can electrostatically interact with poly(I:C). LNP-formulated poly(I:C) triggered both lysosomal TLR3 and cytoplasmic RLRs, in vitro and in vivo, whereas poly(I:C) in an unformulated soluble form only triggered endosomal-localized TLR3. Administration of LNP-formulated poly(I:C) in mouse models led to efficient translocation to lymphoid tissue and concurrent innate immune activation following intramuscular (IM) administration, resulting in a significant increase in innate immune activation compared to unformulated soluble poly(I:C). When used as an adjuvant for recombinant full-length SARS-CoV-2 spike protein, LNP-formulated poly(I:C) elicited potent anti-spike antibody titers, surpassing those of unformulated soluble poly(I:C) by orders of magnitude and offered complete protection against a SARS-CoV-2 viral challenge in vivo, and serum from these mice are capable of significantly reducing viral infection in vitro.


Subject(s)
Liposomes , Nanoparticles , Poly I-C , Spike Glycoprotein, Coronavirus , Toll-Like Receptor 3 , Animals , Mice , Humans , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/metabolism , Adjuvants, Immunologic/pharmacology
7.
Front Immunol ; 14: 1217181, 2023.
Article in English | MEDLINE | ID: mdl-37600776

ABSTRACT

Eosinophils are important mediators of mucosal tissue homeostasis, anti-helminth responses, and allergy. Lung eosinophilia has previously been linked to aberrant Type 2-skewed T cell responses to respiratory viral infection and may also be a consequence of vaccine-associated enhanced respiratory disease (VAERD), particularly in the case of respiratory syncytial virus (RSV) and the formalin-inactivated RSV vaccine. We previously reported a dose-dependent recruitment of eosinophils to the lungs of mice vaccinated with alum-adjuvanted trivalent inactivated influenza vaccine (TIV) following a sublethal, vaccine-matched H1N1 (A/New Caledonia/20/1999; NC99) influenza challenge. Given the differential role of eosinophil subset on immune function, we conducted the investigations herein to phenotype the lung eosinophils observed in our model of influenza breakthrough infection. Here, we demonstrate that eosinophil influx into the lungs of vaccinated mice is adjuvant- and sex-independent, and only present after vaccine-matched sublethal influenza challenge but not in mock-challenged mice. Furthermore, vaccinated and challenged mice had a compositional shift towards more inflammatory eosinophils (iEos) compared to resident eosinophils (rEos), resembling the shift observed in ovalbumin (OVA)-sensitized allergic control mice, however without any evidence of enhanced morbidity or aberrant inflammation in lung cytokine/chemokine signatures. Furthermore, we saw a lung eosinophil influx in the context of a vaccine-mismatched challenge. Additional layers of heterogeneity in the eosinophil compartment were observed via unsupervised clustering analysis of flow cytometry data. Our collective findings are a starting point for more in-depth phenotypic and functional characterization of lung eosinophil subsets in the context of vaccine- and infection-induced immunity.


Subject(s)
Asthma , Hypersensitivity , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Pulmonary Eosinophilia , Animals , Mice , Breakthrough Infections , Lung
8.
bioRxiv ; 2023 May 23.
Article in English | MEDLINE | ID: mdl-37425792

ABSTRACT

Hybrid immunity to SARS-CoV-2 provides superior protection to re-infection. We performed immune profiling studies during breakthrough infections in mRNA-vaccinated hamsters to evaluate hybrid immunity induction. mRNA vaccine, BNT162b2, was dosed to induce binding antibody titers against ancestral spike, but inefficient serum virus neutralization of ancestral SARS-CoV-2 or variants of concern (VoCs). Vaccination reduced morbidity and controlled lung virus titers for ancestral virus and Alpha but allowed breakthrough infections in Beta, Delta and Mu-challenged hamsters. Vaccination primed T cell responses that were boosted by infection. Infection back-boosted neutralizing antibody responses against ancestral virus and VoCs. Hybrid immunity resulted in more cross-reactive sera. Transcriptomics post-infection reflects both vaccination status and disease course and suggests a role for interstitial macrophages in vaccine-mediated protection. Therefore, protection by vaccination, even in the absence of high titers of neutralizing antibodies in the serum, correlates with recall of broadly reactive B- and T-cell responses.

9.
Sci Transl Med ; 14(676): eade0424, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36542692

ABSTRACT

There is currently no licensed vaccine for respiratory syncytial virus (RSV). Here, we assess the effect of RSV fusion protein (F) conformation on B cell responses in a post hoc comparison of samples from the DS-Cav1 [prefusion (pre-F)] and MEDI7510 [postfusion (post-F)] vaccine clinical trials. We compared the magnitude and quality of the serological and B cell responses across time points and vaccines. We measured RSV A and B neutralization, F-binding immunoglobulin G titers, and competition assays at week 0 (before vaccination) and week 4 (after vaccination) to evaluate antibody specificity and potency. To compare B cell specificity and activation, we used pre-F and post-F probes in tandem with a 17-color immunophenotyping flow cytometry panel at week 0 (before vaccination) and week 1 (after vaccination). Our data demonstrate that both DS-Cav1 and MEDI7510 vaccination robustly elicit F-specific antibodies and B cells, but DS-Cav1 elicited antibodies that more potently neutralized both RSV A and B. The superior potency was mediated by antibodies that bind antigenic sites on the apex of pre-F that are not present on post-F. In the memory (CD27+) B cell compartment, vaccination with DS-Cav1 or MEDI7510 elicited B cells with different epitope specificities. B cells preferentially binding the pre-F probe were activated in DS-Cav1-vaccinated participants but not in MEDI7510-vaccinated participants. Our findings emphasize the importance of using pre-F as an immunogen in humans because of its deterministic role in eliciting highly potent neutralizing antibodies and memory B cells.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Humans , Antibodies, Viral , Viral Fusion Proteins/chemistry , Antibodies, Neutralizing , Antigens , Vaccines, Subunit , Respiratory Syncytial Virus Infections/prevention & control
10.
Sci Transl Med ; 14(650): eabo5032, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35731888

ABSTRACT

Respiratory syncytial virus (RSV) is a substantial cause of morbidity and mortality globally. A candidate RSV prefusion (pre-F)-stabilized subunit vaccine, DS-Cav1, has previously been shown to elicit potent and durable neutralizing activity in a phase 1 clinical trial in healthy adults. Here, we used fluorescently labeled probes and flow cytometry to evaluate the antigen specificity and phenotype of RSV F-specific B cells longitudinally after DS-Cav1 immunization. Peripheral blood mononuclear cells (PBMCs) collected at time points before the first immunization through the end of the trial at 44 weeks were assessed by flow cytometry. Our data demonstrate a rapid increase in the frequency of pre-F-specific IgG+ and IgA+ B cells after the first immunization and a modest increase after a second immunization at week 12. Nearly all F-specific B cells down-regulated CD21 and up-regulated the proliferation marker CD71 after the first immunization, with less pronounced activation after the second immunization. Memory B cells (CD27+CD21+) specific for pre-F remained elevated above baseline at 44 weeks after vaccination. DS-Cav1 vaccination also activated human metapneumovirus (HMPV) cross-reactive B cells capable of binding prefusion-stabilized HMPV F protein and increased HMPV F-binding antibodies and neutralizing activity for HMPV in some participants. In summary, vaccination with RSV pre-F resulted in the expansion and activation of RSV and HMPV F-specific B cells that were maintained above baseline for at least 10 months and could contribute to long-term pneumovirus immunity.


Subject(s)
Pneumovirus , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Antibodies, Neutralizing , Antibodies, Viral , Humans , Leukocytes, Mononuclear , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus, Human/genetics , Viral Fusion Proteins/genetics
11.
J Infect Dis ; 226(2): 258-269, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35429403

ABSTRACT

BACKGROUND: Recurrent respiratory syncytial virus (RSV) infection requiring hospitalization is rare and the underlying mechanism is unknown. We aimed to determine the role of CD14-mediated immunity in the pathogenesis of recurrent RSV infection. METHODS: We performed genotyping and longitudinal immunophenotyping of the first patient with a genetic CD14 deficiency who developed recurrent RSV infection. We analyzed gene expression profiles and interleukin (IL)-6 production by patient peripheral blood mononuclear cells in response to RSV pre- and post-fusion (F) protein. We generated CD14-deficient human nasal epithelial cells cultured at air-liquid interface (HNEC-ALI) of patient-derived cells and after CRISPR-based gene editing of control cells. We analyzed viral replication upon RSV infection. RESULTS: Sanger sequencing revealed a homozygous single-nucleotide deletion in CD14, resulting in absence of the CD14 protein in the index patient. In vitro, viral replication was similar in wild-type and CD14-/- HNEC-ALI. Loss of immune cell CD14 led to impaired cytokine and chemokine responses to RSV pre- and post-F protein, characterized by absence of IL-6 production. CONCLUSIONS: We report an association of recurrent RSV bronchiolitis with a loss of CD14 function in immune cells. Lack of CD14 function led to defective immune responses to RSV pre- and post-F protein without a change in viral replication.


Subject(s)
Respiratory Syncytial Virus Infections , Cytokines , Humans , Leukocytes, Mononuclear/metabolism , Lipopolysaccharide Receptors/deficiency , Respiratory Syncytial Virus, Human
12.
Nature ; 603(7902): 687-692, 2022 03.
Article in English | MEDLINE | ID: mdl-35062015

ABSTRACT

The recent emergence of B.1.1.529, the Omicron variant1,2, has raised concerns of escape from protection by vaccines and therapeutic antibodies. A key test for potential countermeasures against B.1.1.529 is their activity in preclinical rodent models of respiratory tract disease. Here, using the collaborative network of the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme of the National Institute of Allergy and Infectious Diseases (NIAID), we evaluated the ability of several B.1.1.529 isolates to cause infection and disease in immunocompetent and human ACE2 (hACE2)-expressing mice and hamsters. Despite modelling data indicating that B.1.1.529 spike can bind more avidly to mouse ACE2 (refs. 3,4), we observed less infection by B.1.1.529 in 129, C57BL/6, BALB/c and K18-hACE2 transgenic mice than by previous SARS-CoV-2 variants, with limited weight loss and lower viral burden in the upper and lower respiratory tracts. In wild-type and hACE2 transgenic hamsters, lung infection, clinical disease and pathology with B.1.1.529 were also milder than with historical isolates or other SARS-CoV-2 variants of concern. Overall, experiments from the SAVE/NIAID network with several B.1.1.529 isolates demonstrate attenuated lung disease in rodents, which parallels preliminary human clinical data.


Subject(s)
COVID-19/pathology , COVID-19/virology , Disease Models, Animal , SARS-CoV-2/pathogenicity , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Cricetinae , Female , Humans , Lung/pathology , Lung/virology , Male , Mesocricetus , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Viral Load
13.
Front Immunol ; 12: 772864, 2021.
Article in English | MEDLINE | ID: mdl-34956199

ABSTRACT

Nipah virus (NiV) represents a significant pandemic threat with zoonotic transmission from bats-to-humans with almost annual regional outbreaks characterized by documented human-to-human transmission and high fatality rates. Currently, no vaccine against NiV has been approved. Structure-based design and protein engineering principles were applied to stabilize the fusion (F) protein in its prefusion trimeric conformation (pre-F) to improve expression and increase immunogenicity. We covalently linked the stabilized pre-F through trimerization domains at the C-terminus to three attachment protein (G) monomers, forming a chimeric design. These studies detailed here focus on mRNA delivery of NiV immunogens in mice, assessment of mRNA immunogen-specific design elements and their effects on humoral and cellular immunogenicity. The pre-F/G chimera elicited a strong neutralizing antibody response and a superior NiV-specific Tfh and other effector T cell response compared to G alone across both the mRNA and protein platforms. These findings enabled final candidate selection of pre-F/G Fd for clinical development.


Subject(s)
Antigens, Viral/genetics , Liposomes/administration & dosage , Nanoparticles/administration & dosage , Nipah Virus/immunology , Viral Envelope Proteins/genetics , Viral Fusion Proteins/genetics , Viral Vaccines/administration & dosage , mRNA Vaccines/administration & dosage , Animals , Antigens, Viral/immunology , Female , Immunoglobulin G/blood , Mice , Public-Private Sector Partnerships , RNA, Messenger/administration & dosage , T-Lymphocytes/immunology , Viral Envelope Proteins/immunology , Viral Fusion Proteins/immunology
14.
Immunity ; 54(8): 1869-1882.e6, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34270939

ABSTRACT

Vaccine-associated enhanced respiratory disease (VAERD) was previously observed in some preclinical models of severe acute respiratory syndrome (SARS) and MERS coronavirus vaccines. We used the SARS coronavirus 2 (SARS-CoV-2) mouse-adapted, passage 10, lethal challenge virus (MA10) mouse model of acute lung injury to evaluate the immune response and potential for immunopathology in animals vaccinated with research-grade mRNA-1273. Whole-inactivated virus or heat-denatured spike protein subunit vaccines with alum designed to elicit low-potency antibodies and Th2-skewed CD4+ T cells resulted in reduced viral titers and weight loss post challenge but more severe pathological changes in the lung compared to saline-immunized animals. In contrast, a protective dose of mRNA-1273 induced favorable humoral and cellular immune responses that protected from viral replication in the upper and lower respiratory tract upon challenge. A subprotective dose of mRNA-1273 reduced viral replication and limited histopathological manifestations compared to animals given saline. Overall, our findings demonstrate an immunological signature associated with antiviral protection without disease enhancement following vaccination with mRNA-1273.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , Host-Pathogen Interactions/immunology , SARS-CoV-2/immunology , Vaccines, Synthetic/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Biopsy , COVID-19 Vaccines/administration & dosage , Disease Models, Animal , Humans , Immunoglobulin G , Immunohistochemistry , Mice , Outcome Assessment, Health Care , RNA, Messenger , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Vaccines, Synthetic/administration & dosage , mRNA Vaccines
15.
Science ; 373(6556)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34210892

ABSTRACT

The emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) that are resistant to therapeutic antibodies highlights the need for continuing discovery of broadly reactive antibodies. We identified four receptor binding domain-targeting antibodies from three early-outbreak convalescent donors with potent neutralizing activity against 23 variants, including the B.1.1.7, B.1.351, P.1, B.1.429, B.1.526, and B.1.617 VOCs. Two antibodies are ultrapotent, with subnanomolar neutralization titers [half-maximal inhibitory concentration (IC50) 0.3 to 11.1 nanograms per milliliter; IC80 1.5 to 34.5 nanograms per milliliter). We define the structural and functional determinants of binding for all four VOC-targeting antibodies and show that combinations of two antibodies decrease the in vitro generation of escape mutants, suggesting their potential in mitigating resistance development.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Antibody Affinity , Antigen-Antibody Reactions , COVID-19/virology , Humans , Immune Evasion , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/metabolism , Mutation , Neutralization Tests , Protein Domains , Receptors, Coronavirus/antagonists & inhibitors , Receptors, Coronavirus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
16.
Lancet Respir Med ; 9(10): 1111-1120, 2021 10.
Article in English | MEDLINE | ID: mdl-33864736

ABSTRACT

BACKGROUND: Multiple active vaccination approaches have proven ineffective in reducing the substantial morbidity and mortality caused by respiratory syncytial virus (RSV) in infants and older adults (aged ≥65 years). A vaccine conferring a substantial and sustainable boost in neutralising activity is required to protect against severe RSV disease. To that end, we evaluated the safety and immunogenicity of DS-Cav1, a prefusion F subunit vaccine. METHODS: In this randomised, open-label, phase 1 clinical trial, the stabilised prefusion F vaccine DS-Cav1 was evaluated for dose, safety, tolerability, and immunogenicity in healthy adults aged 18-50 years at a single US site. Participants were assigned to receive escalating doses of either 50 µg, 150 µg, or 500 µg DS-Cav1 at weeks 0 and 12, and were randomly allocated in a 1:1 ratio within each dose group to receive the vaccine with or without aluminium hydroxide (AlOH) adjuvant. After 71 participants had been randomised, the protocol was amended to allow some participants to receive a single vaccination at week 0. The primary objectives evaluated the safety and tolerability at every dose within 28 days following each injection. Neutralising activity and RSV F-binding antibodies were evaluated from week 0 to week 44 as secondary and exploratory objectives. Safety was assessed in all participants who received at least one vaccine dose; secondary and exploratory immunogenicity analysis included all participants with available data at a given visit. The trial is registered with ClinicalTrials.gov, NCT03049488, and is complete and no longer recruiting. FINDINGS: Between Feb 21, 2017, and Nov 29, 2018, 244 participants were screened for eligibility and 95 were enrolled to receive DS-Cav1 at the 50 µg (n=30, of which n=15 with AlOH), 150 µg (n=35, of which n=15 with AlOH), or 500 µg (n=30, of which n=15 with AlOH) doses. DS-Cav1 was safe and well tolerated and no serious vaccine-associated adverse events deemed related to the vaccine were identified. DS-Cav1 vaccination elicited robust neutralising activity and binding antibodies by 4 weeks after a single vaccination (p<0·0001 for F-binding and neutralising antibodies). In analyses of exploratory endpoints at week 44, pre-F-binding IgG and neutralising activity were significantly increased compared with baseline in all groups. At week 44, RSV A neutralising activity was 3·1 fold above baseline in the 50 µg group, 3·8 fold in the 150 µg group, and 4·5 fold in the 500 µg group (p<0·0001). RSV B neutralising activity was 2·8 fold above baseline in the 50 µg group, 3·4 fold in the 150 µg group, and 3·7 fold in the 500 µg group (p<0·0001). Pre-F-binding IgG remained significantly 3·2 fold above baseline in the 50 µg group, 3·4 fold in the 150 µg group, and 4·0 fold in the 500 µg group (p<0·0001). Pre-F-binding serum IgA remained 4·1 fold above baseline in the 50 µg group, 4·3 fold in the 150 µg group, and 4·8 fold in the 500 µg group (p<0·0001). Although a higher vaccine dose or second immunisation elicited a transient advantage compared with lower doses or a single immunisation, neither significantly impacted long-term neutralisation. There was no long-term effect of dose, number of vaccinations, or adjuvant on neutralising activity. INTERPRETATION: In this phase 1 study, DS-Cav1 vaccination was safe and well tolerated. DS-Cav1 vaccination elicited a robust boost in RSV F-specific antibodies and neutralising activity that was sustained above baseline for at least 44 weeks. A single low-dose of pre-F immunisation of antigen-experienced individuals might confer protection that extends throughout an entire RSV season. FUNDING: The National Institutes of Allergy and Infectious Diseases.


Subject(s)
Respiratory Syncytial Virus Vaccines , Adolescent , Adult , Antibodies, Neutralizing , Antibodies, Viral , Double-Blind Method , Humans , Infant , Middle Aged , Respiratory Syncytial Virus Vaccines/adverse effects , Respiratory Syncytial Viruses , Vaccines, Subunit/adverse effects , Young Adult
17.
bioRxiv ; 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33655252

ABSTRACT

The emergence of highly transmissible SARS-CoV-2 variants of concern (VOC) that are resistant to therapeutic antibodies highlights the need for continuing discovery of broadly reactive antibodies. We identify four receptor-binding domain targeting antibodies from three early-outbreak convalescent donors with potent neutralizing activity against 12 variants including the B.1.1.7 and B.1.351 VOCs. Two of them are ultrapotent, with sub-nanomolar neutralization titers (IC50 <0.0006 to 0.0102 µ g/mL; IC80 < 0.0006 to 0.0251 µ g/mL). We define the structural and functional determinants of binding for all four VOC-targeting antibodies, and show that combinations of two antibodies decrease the in vitro generation of escape mutants, suggesting potential means to mitigate resistance development. These results define the basis of therapeutic cocktails against VOCs and suggest that targeted boosting of existing immunity may increase vaccine breadth against VOCs.

18.
Cell Rep ; 33(4): 108322, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33091382

ABSTRACT

Biotin-labeled molecular probes, comprising specific regions of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike, would be helpful in the isolation and characterization of antibodies targeting this recently emerged pathogen. Here, we design constructs incorporating an N-terminal purification tag, a site-specific protease-cleavage site, the probe region of interest, and a C-terminal sequence targeted by biotin ligase. Probe regions include full-length spike ectodomain as well as various subregions, and we also design mutants that eliminate recognition of the angiotensin-converting enzyme 2 (ACE2) receptor. Yields of biotin-labeled probes from transient transfection range from ∼0.5 mg/L for the complete ectodomain to >5 mg/L for several subregions. Probes are characterized for antigenicity and ACE2 recognition, and the structure of the spike ectodomain probe is determined by cryoelectron microscopy. We also characterize antibody-binding specificities and cell-sorting capabilities of the biotinylated probes. Altogether, structure-based design coupled to efficient purification and biotinylation processes can thus enable streamlined development of SARS-CoV-2 spike ectodomain probes.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Coronavirus Infections/immunology , Molecular Probes/immunology , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2 , Antibody Specificity/immunology , Binding Sites, Antibody/immunology , Biotinylation , COVID-19 , Cryoelectron Microscopy , Humans , Pandemics , Peptidyl-Dipeptidase A/metabolism , Receptors, Virus/metabolism
19.
Nature ; 586(7830): 567-571, 2020 10.
Article in English | MEDLINE | ID: mdl-32756549

ABSTRACT

A vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed to control the coronavirus disease 2019 (COVID-19) global pandemic. Structural studies have led to the development of mutations that stabilize Betacoronavirus spike proteins in the prefusion state, improving their expression and increasing immunogenicity1. This principle has been applied to design mRNA-1273, an mRNA vaccine that encodes a SARS-CoV-2 spike protein that is stabilized in the prefusion conformation. Here we show that mRNA-1273 induces potent neutralizing antibody responses to both wild-type (D614) and D614G mutant2 SARS-CoV-2 as well as CD8+ T cell responses, and protects against SARS-CoV-2 infection in the lungs and noses of mice without evidence of immunopathology. mRNA-1273 is currently in a phase III trial to evaluate its efficacy.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , 2019-nCoV Vaccine mRNA-1273 , Animals , Antibodies, Neutralizing/immunology , Betacoronavirus/genetics , CD8-Positive T-Lymphocytes/immunology , COVID-19 , COVID-19 Vaccines , Clinical Trials, Phase III as Topic , Coronavirus Infections/genetics , Coronavirus Infections/virology , Female , Lung/immunology , Lung/virology , Mice , Mutation , Nose/immunology , Nose/virology , Pneumonia, Viral/virology , RNA, Messenger/genetics , RNA, Viral/genetics , SARS-CoV-2 , Th1 Cells/immunology , Toll-Like Receptor 4/agonists , Toll-Like Receptor 4/immunology , Viral Vaccines/chemistry , Viral Vaccines/genetics
20.
N Engl J Med ; 383(16): 1544-1555, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32722908

ABSTRACT

BACKGROUND: Vaccines to prevent coronavirus disease 2019 (Covid-19) are urgently needed. The effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines on viral replication in both upper and lower airways is important to evaluate in nonhuman primates. METHODS: Nonhuman primates received 10 or 100 µg of mRNA-1273, a vaccine encoding the prefusion-stabilized spike protein of SARS-CoV-2, or no vaccine. Antibody and T-cell responses were assessed before upper- and lower-airway challenge with SARS-CoV-2. Active viral replication and viral genomes in bronchoalveolar-lavage (BAL) fluid and nasal swab specimens were assessed by polymerase chain reaction, and histopathological analysis and viral quantification were performed on lung-tissue specimens. RESULTS: The mRNA-1273 vaccine candidate induced antibody levels exceeding those in human convalescent-phase serum, with live-virus reciprocal 50% inhibitory dilution (ID50) geometric mean titers of 501 in the 10-µg dose group and 3481 in the 100-µg dose group. Vaccination induced type 1 helper T-cell (Th1)-biased CD4 T-cell responses and low or undetectable Th2 or CD8 T-cell responses. Viral replication was not detectable in BAL fluid by day 2 after challenge in seven of eight animals in both vaccinated groups. No viral replication was detectable in the nose of any of the eight animals in the 100-µg dose group by day 2 after challenge, and limited inflammation or detectable viral genome or antigen was noted in lungs of animals in either vaccine group. CONCLUSIONS: Vaccination of nonhuman primates with mRNA-1273 induced robust SARS-CoV-2 neutralizing activity, rapid protection in the upper and lower airways, and no pathologic changes in the lung. (Funded by the National Institutes of Health and others.).


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , 2019-nCoV Vaccine mRNA-1273 , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/physiology , CD4 Antigens , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/pathology , Coronavirus Infections/therapy , Disease Models, Animal , Dose-Response Relationship, Immunologic , Immunization, Passive , Lung/pathology , Lung/virology , Macaca mulatta , Pneumonia, Viral/pathology , Pneumonia, Viral/therapy , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , T-Lymphocytes/immunology , Viral Load , Viral Vaccines/administration & dosage , Virus Replication , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL