Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 236
1.
Magn Reson Med ; 91(4): 1314-1322, 2024 Apr.
Article En | MEDLINE | ID: mdl-38044723

PURPOSE: To demonstrate J-difference coediting of glutamate using Hadamard encoding and reconstruction of Mescher-Garwood-edited spectroscopy (HERMES). METHODS: Density-matrix simulations of HERMES (TE 80 ms) and 1D J-resolved (TE 31-229 ms) of glutamate (Glu), glutamine (Gln), γ-aminobutyric acid (GABA), and glutathione (GSH) were performed. HERMES comprised four sub-experiments with editing pulses applied as follows: (A) 1.9/4.56 ppm simultaneously (ONGABA /ONGSH ); (B) 1.9 ppm only (ONGABA /OFFGSH ); (C) 4.56 ppm only (OFFGABA /ONGSH ); and (D) 7.5 ppm (OFFGABA /OFFGSH ). Phantom HERMES and 1D J-resolved experiments of Glu were performed. Finally, in vivo HERMES (20-ms editing pulses) and 1D J-resolved (TE 31-229 ms) experiments were performed on 137 participants using 3 T MRI scanners. LCModel was used for quantification. RESULTS: HERMES simulation and phantom experiments show a Glu-edited signal at 2.34 ppm in the Hadamard sum combination A+B+C+D with no overlapping Gln signal. The J-resolved simulations and phantom experiments show substantial TE modulation of the Glu and Gln signals across the TEs, whose average yields a well-resolved Glu signal closely matching the Glu-edited signal from the HERMES sum spectrum. In vivo quantification of Glu show that the two methods are highly correlated (p < 0.001) with a bias of ∼10%, along with similar between-subject coefficients of variation (HERMES/TE-averaged: ∼7.3%/∼6.9%). Other Hadamard combinations produce the expected GABA-edited (A+B-C-D) or GSH-edited (A-B+C-D) signal. CONCLUSION: HERMES simulation and phantom experiments show the separation of Glu from Gln. In vivo HERMES experiments yield Glu (without Gln), GABA, and GSH in a single MRS scan.


Glutamic Acid , Magnetic Resonance Imaging , Humans , Magnetic Resonance Spectroscopy/methods , Glutamine , Glutathione/chemistry , gamma-Aminobutyric Acid/chemistry
2.
NeuroImmune Pharm Ther ; 2(4): 375-386, 2023 Dec.
Article En | MEDLINE | ID: mdl-38058999

Objectives: To evaluate whether prenatal tobacco exposure (PTE) is related to poorer cognitive performance, abnormal brain morphometry, and whether poor cognitive performance is mediated by PTE-related structural brain differences. Methods: The Adolescent Brain Cognitive Development study dataset was used to compare structural MRI data and neurocognitive (NIH Toolbox®) scores in 9-to-10-year-old children with (n=620) and without PTE (n=10,989). We also evaluated whether PTE effects on brain morphometry mediated PTE effects on neurocognitive scores. Group effects were evaluated using Linear Mixed Models, covaried for socio-demographics and prenatal exposures to alcohol and/or marijuana, and corrected for multiple comparisons using the false-discovery rate (FDR). Results: Compared to unexposed children, those with PTE had poorer performance (all p-values <0.05) on executive function, working memory, episodic memory, reading decoding, crystallized intelligence, fluid intelligence and overall cognition. Exposed children also had thinner parahippocampal gyri, smaller surface areas in the posterior-cingulate and pericalcarine cortices; the lingual and inferior parietal gyri, and smaller thalamic volumes (all p-values <0.001). Furthermore, among children with PTE, girls had smaller surface areas in the superior-frontal (interaction-FDR-p=0.01), precuneus (interaction-FDR-p=0.03) and postcentral gyri (interaction-FDR-p=0.02), while boys had smaller putamen volumes (interaction-FDR-p=0.02). Smaller surface areas across regions of the frontal and parietal lobes, and lower thalamic volumes, partially mediated the associations between PTE and poorer neurocognitive scores (p-values <0.001). Conclusions: Our findings suggest PTE may lead to poorer cognitive performance and abnormal brain morphometry, with sex-specific effects in some brain regions, in pre-adolescent children. The poor cognition in children with PTE may result from the smaller areas and subcortical brain volumes.

3.
Addiction ; 118(12): 2384-2396, 2023 12.
Article En | MEDLINE | ID: mdl-37563863

AIMS: Prior studies showed that methamphetamine (METH) users had greater than normal age-related brain atrophy; whether having the apolipoprotein E (APOE)-ε4 allele may be a contributory factor has not been evaluated. We aimed to determine the independent and combined effects of chronic heavy METH use and having at least one copy of the APOE-ε4 allele (APOE-ε4+) on brain morphometry and cognition, especially in relation to aging. METHODS: We compared brain morphometry and cognitive performance in 77 individuals with chronic heavy METH use (26 APOE-ε4+, 51 APOE-ε4-) and 226 Non-METH users (66 APOE-ε4+, 160 APOE-ε4-), using a 2 × 2 design (two-way analysis of co-variance). Vertex-wise cortical volumes, thickness and seven subcortical volumes, were automatically measured using FreeSurfer. Linear regression between regional brain measures, and cognitive scores that showed group differences were evaluated. Group differences in age-related decline in brain and cognitive measures were also explored. RESULTS: Regardless of APOE-ε4 genotype, METH users had lower Motor Z-scores (P = 0.005), thinner right lateral-orbitofrontal cortices (P < 0.001), smaller left pars-triangularis gyrus volumes (P = 0.004), but larger pallida, hippocampi and amygdalae (P = 0.004-0.006) than nonusers. Across groups, APOE-ε4+ METH users had the smallest volumes of superior frontal cortical gyri bilaterally, and of the smallest volume in left rostral-middle frontal gyri (all P-values <0.001). Smaller right superior-frontal gyrus predicted poorer motor function only in APOE-ε4+ participants (interaction-P < 0.001). Cortical volumes and thickness declined with age similarly across all participants; however, APOE-ε4-carriers showed thinner right inferior parietal cortices than noncarriers at younger age (interaction-P < 0.001). CONCLUSIONS: Chronic heavy use and having at least one copy of the APOE-ε4 allele may have synergistic effects on brain atrophy, particularly in frontal cortices, which may contribute to their poorer cognitive function. However, the enlarged subcortical volumes in METH users replicated prior studies, and are likely due to METH-mediated neuroinflammation.


Methamphetamine , Humans , Alleles , Methamphetamine/adverse effects , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain/pathology , Cognition , Genotype , Apolipoprotein E4/genetics , Atrophy/pathology , Neuropsychological Tests
4.
J Infect Dis ; 228(11): 1559-1570, 2023 11 28.
Article En | MEDLINE | ID: mdl-37540098

BACKGROUND: The aim of this study was to determine whether neurometabolite abnormalities indicating neuroinflammation and neuronal injury are detectable in individuals post-coronavirus disease 2019 (COVID-19) with persistent neuropsychiatric symptoms. METHODS: All participants were studied with proton magnetic resonance spectroscopy at 3 T to assess neurometabolite concentrations (point-resolved spectroscopy, relaxation time/echo time = 3000/30 ms) in frontal white matter (FWM) and anterior cingulate cortex-gray matter (ACC-GM). Participants also completed the National Institutes of Health Toolbox cognition and motor batteries and selected modules from the Patient-Reported Outcomes Measurement Information System. RESULTS: Fifty-four participants were evaluated: 29 post-COVID-19 (mean ± SD age, 42.4 ± 12.3 years; approximately 8 months from COVID-19 diagnosis; 19 women) and 25 controls (age, 44.1 ± 12.3 years; 14 women). When compared with controls, the post-COVID-19 group had lower total N-acetyl compounds (tNAA; ACC-GM: -5.0%, P = .015; FWM: -4.4%, P = .13), FWM glutamate + glutamine (-9.5%, P = .001), and ACC-GM myo-inositol (-6.2%, P = .024). Additionally, only hospitalized patients post-COVID-19 showed age-related increases in myo-inositol, choline compounds, and total creatine (interaction P = .029 to <.001). Across all participants, lower FWM tNAA and higher ACC-GM myo-inositol predicted poorer performance on several cognitive measures (P = .001-.009), while lower ACC-GM tNAA predicted lower endurance on the 2-minute walk (P = .005). CONCLUSIONS: In participants post-COVID-19 with persistent neuropsychiatric symptoms, the lower-than-normal tNAA and glutamate + glutamine indicate neuronal injury, while the lower-than-normal myo-inositol reflects glial dysfunction, possibly related to mitochondrial dysfunction and oxidative stress in Post-COVID participants with persistent neuropsychiatric symptoms.


COVID-19 , Glutamine , Humans , Female , Adult , Middle Aged , Proton Magnetic Resonance Spectroscopy/methods , Glutamine/metabolism , Protons , COVID-19 Testing , COVID-19/metabolism , Brain/diagnostic imaging , Brain/metabolism , Inositol/metabolism , Glutamates/metabolism , Aspartic Acid/metabolism
5.
NeuroImmune Pharm Ther ; 2(2): 95-101, 2023 Jun 20.
Article En | MEDLINE | ID: mdl-37502462

Objective: To quantify neuropsychiatric symptoms reported by individuals with Post-Acute Sequelae of COVID-19 (PASC) using the NIH Toolbox® for Assessment of Neurological and Behavioral Function (NIHTB) and Patient-Reported Outcomes Measurement Information System (PROMIS). Methods: 30 PASC (20 women, 21-63 years) and 27 control (16 women, 25-68 years) participants completed three NIHTB batteries and selected PROMIS tests. Group differences on fully corrected T-scores were evaluated using analysis of covariance and Cohen's d effect sizes. A linear regression model predicted the effects from time since diagnosis. Results: PASC had poorer emotional health and motor function than controls, including poorer locomotion, endurance and dexterity, but normal cognitive function, ~7 months post-infection, compared to controls. PASC participants had a steeper age-related decline on 2-Minute Walk than controls. T-scores on four cognitive and three motor tests improved with longer time since diagnosis. Conclusion: NIHTB and PROMIS captured the poorer emotional health and motor function in PASC, including the novel findings of deficits locomotion and dexterity. The normal cognitive performance suggests subclinical effects that may be compensated by neural and cognitive reserves, and manifested subjectively by the negative psychological effects and fatigue. The persistent emotional and psychiatric symptoms necessitate mental health treatment be prioritized.

6.
NeuroImmune Pharm Ther ; 2(2): 89-94, 2023 Jun.
Article En | MEDLINE | ID: mdl-37476292

Objectives: Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection is associated with lower plasma glutathione (GSH) levels due to oxidative stress. However, plasma levels may not reflect brain GSH levels. Individuals with post-acute sequelae of COVID-19 (PASC) have a higher prevalence of cognitive fatigue, which might be related to altered brain γ-aminobutyric-acid (GABA) levels. Hence, our study aims to measure the brain GSH and GABA levels in PASC. Methods: 29 PASC participants and 24 uninfected controls were recruited for this study. Each was evaluated with detailed neuropsychiatric assessments and an edited proton MRS (Hadamard Encoding and Reconstruction of Mega-Edited Spectroscopy, HERMES) method to measure GABA and GSH concentrations in predominantly grey matter (GM) and predominantly white matter (WM) brain frontal voxels. Results: PASC participants were 219 ± 137 days since their COVID-19 diagnosis. Nine individuals with PASC were hospitalized. Compared to controls, individuals with PASC had similar levels of GABA in both brain regions, but lower GSH and greater age-related GSH decline in the frontal GM region. Conclusions: The lower-than-normal frontal GM GSH level in participants with PASC suggest that they have ongoing oxidative stress in the brain, and that older individuals may be even more vulnerable to oxidative stress.

7.
JAMIA Open ; 6(2): ooad037, 2023 Jul.
Article En | MEDLINE | ID: mdl-37273962

Background: In a recent survey, medical students expressed eagerness to acquire competencies in the use of artificial intelligence (AI) in medicine. It is time that undergraduate medical education takes the lead in helping students develop these competencies. We propose a solution that integrates competency-driven AI instruction in medical school curriculum. Methods: We applied constructivist and backwards design principles to design online learning assignments simulating the real-world work done in the healthcare industry. Our innovative approach assumed no technical background for students, yet addressed the need for training clinicians to be ready to practice in the new digital patient care environment. This modular 4-week AI course was implemented in 2019, integrating AI with evidence-based medicine, pathology, pharmacology, tele-monitoring, quality improvement, value-based care, and patient safety. Results: This educational innovation was tested in 2 cohorts of fourth year medical students who demonstrated an improvement in knowledge with an average quiz score of 97% and in skills with an average application assignment score of 89%. Weekly reflections revealed how students learned to transition from theory to practice of AI and how these concepts might apply to their upcoming residency training programs and future medical practice. Conclusions: We present an innovative product that achieves the objective of competency-based education of students regarding the role of AI in medicine. This course can be integrated in the preclinical years with a focus on foundational knowledge, vocabulary, and concepts, and in clinical years with a focus on application of core knowledge to real-world scenarios.

8.
Neurology ; 100(23): e2409-e2423, 2023 06 06.
Article En | MEDLINE | ID: mdl-37185175

BACKGROUND AND OBJECTIVES: Post-COVID condition (PCC) is common and often involves neuropsychiatric symptoms. This study aimed to use blood oxygenation level-dependent fMRI (BOLD-fMRI) to assess whether participants with PCC had abnormal brain activation during working memory (WM) and whether the abnormal brain activation could predict cognitive performance, motor function, or psychiatric symptoms. METHODS: The participants with PCC had documented coronavirus disease 2019 (COVID-19) at least 6 weeks before enrollment. Healthy control participants had no prior history of COVID-19 and negative tests for severe acute respiratory syndrome coronavirus 2. Participants were assessed using 3 NIH Toolbox (NIHTB) batteries for Cognition (NIHTB-CB), Emotion (NIHTB-EB), and Motor function (NIHTB-MB) and selected tests from the Patient-Reported Outcomes Measurement Information System (PROMIS). Each had BOLD-fMRI at 3T, during WM (N-back) tasks with increasing attentional/WM load. RESULTS: One hundred sixty-nine participants were screened; 50 fulfilled the study criteria and had complete and usable data sets for this cross-sectional cohort study. Twenty-nine participants with PCC were diagnosed with COVID-19 242 ± 156 days earlier; they had similar ages (42 ± 12 vs 41 ± 12 years), gender proportion (65% vs 57%), racial/ethnic distribution, handedness, education, and socioeconomic status, as the 21 uninfected healthy controls. Despite the high prevalence of memory (79%) and concentration (93%) complaints, the PCC group had similar performance on the NIHTB-CB as the controls. However, participants with PCC had greater brain activation than the controls across the network (false discovery rate-corrected p = 0.003, Tmax = 4.17), with greater activation in the right superior frontal gyrus (p = 0.009, Cohen d = 0.81, 95% CI 0.15-1.46) but lesser deactivation in the default mode regions (p = 0.001, d = 1.03, 95% CI 0.61-1.99). Compared with controls, participants with PCC also had poorer dexterity and endurance on the NIHTB-MB, higher T scores for negative affect and perceived stress, but lower T scores for psychological well-being on the NIHTB-EB, as well as more pain symptoms and poorer mental and physical health on measures from the PROMIS. Greater brain activation predicted poorer scores on measures that were abnormal on the NIHTB-EB. DISCUSSION: Participants with PCC and neuropsychiatric symptoms demonstrated compensatory neural processes with greater usage of alternate brain regions, and reorganized networks, to maintain normal performance during WM tasks. BOLD-fMRI was sensitive for detecting brain abnormalities that correlated with various quantitative neuropsychiatric symptoms.


COVID-19 , Memory, Short-Term , Humans , Memory, Short-Term/physiology , Post-Acute COVID-19 Syndrome , Cross-Sectional Studies , Brain/diagnostic imaging , Magnetic Resonance Imaging , Neuropsychological Tests
9.
AMA J Ethics ; 25(5): E317-323, 2023 05 01.
Article En | MEDLINE | ID: mdl-37132616

Art Rounds is an interprofessional workshop that uses art to develop nursing and medical students' observation skills and empathy. The workshop's joint emphasis on interprofessional education (IPE) and visual thinking strategies (VTS) is intended to improve patient outcomes, strengthen interprofessional collaboration, and maintain a climate of mutual respect and shared values. Interprofessional teams of 4 to 5 students practice faculty-guided VTS on artworks. Students then apply VTS and IPE competencies in observing, interviewing, and assessing evidence during 2 encounters with standardized patients (SPs). Students also write a chart note that includes differential diagnoses with supportive evidence for each of the 2 SPs. Art Rounds focuses on students' observation of details and interpretation of images and SPs' physical appearance; evaluation strategies include grading rubrics for the chart notes and a student-completed evaluation survey.


Art , Students, Medical , Students, Nursing , Humans
10.
NeuroImmune Pharm Ther ; 2(1): 37-48, 2023 Mar 25.
Article En | MEDLINE | ID: mdl-37067870

Objectives: We aimed to compare brain white matter integrity in participants with post-COVID-19 conditions (PCC) and healthy controls. Methods: We compared cognitive performance (NIH Toolbox®), psychiatric symptoms and diffusion tensor imaging (DTI) metrics between 23 PCC participants and 24 controls. Fractional anisotropy (FA), axial (AD), radial (RD), and mean (MD) diffusivities were measured in 9 white matter tracts and 6 subcortical regions using MRICloud. Results: Compared to controls, PCC had similar cognitive performance, but greater psychiatric symptoms and perceived stress, as well as higher FA and lower diffusivities in multiple white matter tracts (ANCOVA-p-values≤0.001-0.048). Amongst women, PCC had higher left amygdala-MD than controls (sex-by-PCC p=0.006). Regardless of COVID-19 history, higher sagittal strata-FA predicted greater fatigue (r=0.48-0.52, p<0.001) in all participants, and higher left amygdala-MD predicted greater fatigue (r=0.61, p<0.001) and anxiety (r=0.69, p<0.001) in women, and higher perceived stress (r=0.45, p=0.002) for all participants. Conclusions: Microstructural abnormalities are evident in PCC participants averaged six months after COVID-19. The restricted diffusivity (with reduced MD) and higher FA suggest enhanced myelination or increased magnetic susceptibility from iron deposition, as seen in stress conditions. The higher amygdala-MD in female PCC suggests persistent neuroinflammation, which might contribute to their fatigue, anxiety, and perceived stress.

11.
Dev Cogn Neurosci ; 61: 101247, 2023 Jun.
Article En | MEDLINE | ID: mdl-37119589

Bullying victimization is associated with a doubled risk of attempting suicide in adulthood. Two longitudinal brain morphometry studies identified the fusiform gyrus and putamen as vulnerable to bullying. No study identified how neural alterations may mediate the effect of bullying on cognition. We assessed participants with caregiver-reported bullying (N = 323) and matched non-bullied controls (N = 322) from the Adolescent Brain Cognitive Development Study dataset to identify changes in brain morphometry associated with ongoing bullying victimization over two years and determine whether such alterations mediated the effect of bullying on cognition. Bullied children (38.7% girls, 47.7% racial minorities, 9.88 ± 0.62 years at baseline) had poorer cognitive performance (P < 0.05), larger right hippocampus (P = 0.036), left entorhinal cortex, left superior parietal cortex, and right fusiform gyrus volumes (all P < 0.05), as well as larger surface areas in multiple other frontal, parietal, and occipital cortices. Thinner cortices were also found in the left hemisphere, particularly in the left temporal lobe, and right frontal region (all P < 0.05). Importantly, larger surface area in the fusiform cortices partially suppressed (12-16%), and thinner precentral cortices partially mitigated, (7%) the effect of bullying on cognition (P < 0.05). These findings highlight the negative impact of prolonged bullying victimization on brain morphometry and cognition.


Bullying , Crime Victims , Child , Female , Adolescent , Humans , Male , Brain , Longitudinal Studies , Cognition
12.
J Infect Dis ; 227(Suppl 1): S16-S29, 2023 03 17.
Article En | MEDLINE | ID: mdl-36930637

Before the introduction of antiretroviral therapy, human immunodeficiency virus (HIV) infection was often accompanied by central nervous system (CNS) opportunistic infections and HIV encephalopathy marked by profound structural and functional alterations detectable with neuroimaging. Treatment with antiretroviral therapy nearly eliminated CNS opportunistic infections, while neuropsychiatric impairment and peripheral nerve and organ damage have persisted among virally suppressed people with HIV (PWH), suggesting ongoing brain injury. Neuroimaging research must use methods sensitive for detecting subtle HIV-associated brain structural and functional abnormalities, while allowing for adjustments for potential confounders, such as age, sex, substance use, hepatitis C coinfection, cardiovascular risk, and others. Here, we review existing and emerging neuroimaging tools that demonstrated promise in detecting markers of HIV-associated brain pathology and explore strategies to study the impact of potential confounding factors on these brain measures. We emphasize neuroimaging approaches that may be used in parallel to gather complementary information, allowing efficient detection and interpretation of altered brain structure and function associated with suboptimal clinical outcomes among virally suppressed PWH. We examine the advantages of each imaging modality and systematic approaches in study design and analysis. We also consider advantages of combining experimental and statistical control techniques to improve sensitivity and specificity of biotype identification and explore the costs and benefits of aggregating data from multiple studies to achieve larger sample sizes, enabling use of emerging methods for combining and analyzing large, multifaceted data sets. Many of the topics addressed in this article were discussed at the National Institute of Mental Health meeting "Biotypes of CNS Complications in People Living with HIV," held in October 2021, and are part of ongoing research initiatives to define the role of neuroimaging in emerging alternative approaches to identifying biotypes of CNS complications in PWH. An outcome of these considerations may be the development of a common neuroimaging protocol available for researchers to use in future studies examining neurological changes in the brains of PWH.


AIDS Dementia Complex , Central Nervous System Diseases , HIV Infections , Opportunistic Infections , Humans , HIV , Brain/pathology , AIDS Dementia Complex/drug therapy , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/pathology
13.
Pediatr Res ; 94(1): 356-364, 2023 07.
Article En | MEDLINE | ID: mdl-36456690

BACKGROUND: The aim of this study was to determine the extent to which socioeconomic characteristics of the home and neighborhood are associated with racial inequalities in brain outcomes. METHODS: We performed a cross-sectional analysis of the baseline dataset (v.2.0.1) from the Adolescent Brain and Cognitive Development (ABCD) Study. Cognitive performance was assessed using the National Institutes of Health Toolbox (NIH-TB) cognitive battery. Standard socioeconomic indicators of the family and neighborhood were derived from census-related statistics. Cortical morphometric measures included MRI-derived thickness, area, and volume. RESULTS: 9638 children were included. Each NIH-TB cognitive measure was negatively associated with household and neighborhood socioeconomic characteristics. Differences in cognitive scores between Black or Hispanic children and other racial groups were mitigated by higher household income. Most children from lowest-income families or residents in impoverished neighborhoods were Black or Hispanic. These disparities were associated with racial differences in NIH-TB measures and mediated by smaller cortical brain volumes. CONCLUSIONS: Neighborhood socioeconomic characteristics are associated with racial differences in preadolescent brain outcomes and mitigated by greater household income. Household income mediates racial differences more strongly than neighborhood-level socioeconomic indicators in brain outcomes. Highlighting these socioeconomic risks may direct focused policy-based interventions such as allocation of community resources to ensure equitable brain outcomes in children. IMPACT: Neighborhood socioeconomic characteristics are associated with racial differences in preadolescent brain outcomes and mitigated by greater household income. Household income mediates racial differences more strongly than neighborhood-level socioeconomic indicators in brain outcomes. Highlighting these disparities related to socioeconomic risks may direct focused policy-based interventions such as allocation of community resources to ensure equitable brain outcomes in children.


Poverty , Racial Groups , Child , Adolescent , Humans , Cross-Sectional Studies , Socioeconomic Factors , Residence Characteristics , Brain/diagnostic imaging
14.
J Magn Reson Imaging ; 57(5): 1552-1564, 2023 05.
Article En | MEDLINE | ID: mdl-36165907

BACKGROUND: Cognitive training may partially reverse cognitive deficits in people with HIV (PWH). Previous functional MRI (fMRI) studies demonstrate that working memory training (WMT) alters brain activity during working memory tasks, but its effects on resting brain network organization remain unknown. PURPOSE: To test whether WMT affects PWH brain functional connectivity in resting-state fMRI (rsfMRI). STUDY TYPE: Prospective. POPULATION: A total of 53 PWH (ages 50.7 ± 1.5 years, two women) and 53 HIV-seronegative controls (SN, ages 49.5 ± 1.6 years, six women). FIELD STRENGTH/SEQUENCE: Axial single-shot gradient-echo echo-planar imaging at 3.0 T was performed at baseline (TL1), at 1-month (TL2), and at 6-months (TL3), after WMT. ASSESSMENT: All participants had rsfMRI and clinical assessments (including neuropsychological tests) at TL1 before randomization to Cogmed WMT (adaptive training, n = 58: 28 PWH, 30 SN; nonadaptive training, n = 48: 25 PWH, 23 SN), 25 sessions over 5-8 weeks. All assessments were repeated at TL2 and at TL3. The functional connectivity estimated by independent component analysis (ICA) or graph theory (GT) metrics (eigenvector centrality, etc.) for different link densities (LDs) were compared between PWH and SN groups at TL1 and TL2. STATISTICAL TESTS: Two-way analyses of variance (ANOVA) on GT metrics and two-sample t-tests on FC or GT metrics were performed. Cognitive (eg memory) measures were correlated with eigenvector centrality (eCent) using Pearson's correlations. The significance level was set at P < 0.05 after false discovery rate correction. RESULTS: The ventral default mode network (vDMN) eCent differed between PWH and SN groups at TL1 but not at TL2 (P = 0.28). In PWH, vDMN eCent changes significantly correlated with changes in the memory ability in PWH (r = -0.62 at LD = 50%) and vDMN eCent before training significantly correlated with memory performance changes (r = 0.53 at LD = 50%). DATA CONCLUSION: ICA and GT analyses showed that adaptive WMT normalized graph properties of the vDMN in PWH. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: 1.


HIV Infections , Memory, Short-Term , Female , Humans , Middle Aged , Brain , Brain Mapping/methods , Cognitive Training , Magnetic Resonance Imaging/methods , Prospective Studies , Case-Control Studies
15.
Front Psychol ; 13: 925727, 2022.
Article En | MEDLINE | ID: mdl-36225678

Objective: Peer victimization is a substantial early life stressor linked to psychiatric symptoms and poor academic performance. However, the sex-specific cognitive or behavioral outcomes of bullying have not been well-described in preadolescent children. Methods: Using the baseline dataset of the Adolescent Brain Cognitive Development (ABCD) Study 2.0.1 data repository (N = 11,875), we evaluated associations between parent-reported bullying victimization, suicidality (suicidal ideation, intent, and/or behavior), and non-suicidal self-injury (NSSI), as well as internalizing and externalizing behavioral problems, cognition, and academic performance. Results: Of the 11,015 9-10-year-old children included in the analyses (5,263 girls), 15.3% experienced bullying victimization, as reported by the primary caregiver. Of these, boys were more likely to be bullied than girls (odds ratio [OR], 1.2 [95% CI, 1.1-1.3]; p = 0.004). Children who were bullied were more likely to display NSSI or passive suicidality (OR, 2.4 [95% CI, 2.0-2.9]; p < 0.001) and active suicidality (OR, 3.4 [95% CI, 2.7-4.2]; p < 0.001). Bullied children also had lower cognitive scores, greater behavioral problems, and poorer grades (p < 0.001). Across all participants, boys had poorer grades and greater behavioral problems than girls; however, bullied boys had greater behavioral problems than girls in several areas (p < 0.001). Compared to their non-bullied peers, bullied children with greater non-suicidal self-injury or suicidality also had greater behavioral problems and poorer grades (p < 0.001). Conclusion: These findings highlight the sex-specific effects of bullying, and the negative associations of bullying victimization with cognitive performance, behavioral problems, and academic performance. Future longitudinal studies will identify the natural history and neural correlates of these deficits during adolescence.

16.
Front Aging Neurosci ; 14: 796110, 2022.
Article En | MEDLINE | ID: mdl-35444526

Background: Adaptive computerized working memory (WM) training has shown favorable effects on cerebral cortical thickness as compared to non-adaptive training in healthy individuals. However, knowledge of WM training-related morphological changes in mild cognitive impairment (MCI) is limited. Objective: The primary objective of this double-blind randomized study was to investigate differences in longitudinal cortical thickness trajectories after adaptive and non-adaptive WM training in patients with MCI. We also investigated the genotype effects on cortical thickness trajectories after WM training combining these two training groups using longitudinal structural magnetic resonance imaging (MRI) analysis in Freesurfer. Method: Magnetic resonance imaging acquisition at 1.5 T were performed at baseline, and after four- and 16-weeks post training. A total of 81 individuals with MCI accepted invitations to undergo 25 training sessions over 5 weeks. Longitudinal Linear Mixed effect models investigated the effect of adaptive vs. non-adaptive WM training. The LME model was fitted for each location (vertex). On all statistical analyzes, a threshold was applied to yield an expected false discovery rate (FDR) of 5%. A secondary LME model investigated the effects of LMX1A and APOE-ε4 on cortical thickness trajectories after WM training. Results: A total of 62 participants/patients completed the 25 training sessions. Structural MRI showed no group difference between the two training regimes in our MCI patients, contrary to previous reports in cognitively healthy adults. No significant structural cortical changes were found after training, regardless of training type, across all participants. However, LMX1A-AA carriers displayed increased cortical thickness trajectories or lack of decrease in two regions post-training compared to those with LMX1A-GG/GA. No training or training type effects were found in relation to the APOE-ε4 gene variants. Conclusion: The MCI patients in our study, did not have improved cortical thickness after WM training with either adaptive or non-adaptive training. These results were derived from a heterogeneous population of MCI participants. The lack of changes in the cortical thickness trajectory after WM training may also suggest the lack of atrophy during this follow-up period. Our promising results of increased cortical thickness trajectory, suggesting greater neuroplasticity, in those with LMX1A-AA genotype need to be validated in future trials.

17.
Dev Cogn Neurosci ; 54: 101081, 2022 04.
Article En | MEDLINE | ID: mdl-35152002

The Adolescent Brain Cognitive Development (ABCD)SM study aims to retain a demographically diverse sample of youth and one parent across 21 sites throughout its 10-year protocol while minimizing selective (systematic) attrition. To evaluate the effectiveness of these efforts, the ABCD Retention Workgroup (RW) has employed a data-driven approach to examine, track, and intervene via three key metrics: (1) which youth completed visits late; (2) which youth missed visits; and (3) which youth withdrew from the study. The RW actively examines demographic (race, education level, family income) and site factors (visit satisfaction, distance from site, and enrollment in ancillary studies) to strategize efforts that will minimize disengagement and loss of participating youth and parents. Data showed that the most robust primary correlates of late visits were distance from study site, race, and parental education level. Race, lower parental education level, parental employment status, and lower family income were associated with higher odds of missed visits, while being enrolled in one of the ancillary studies was associated with lower odds of missed visits. Additionally, parents who were primary Spanish speakers withdrew at slightly higher rates. These findings provide insight into future targets for proactive retention efforts by the ABCD RW.


Cognition , Parents , Adolescent , Brain , Educational Status , Humans
18.
J Trauma Stress ; 35(3): 852-867, 2022 06.
Article En | MEDLINE | ID: mdl-35132700

The current cross-sectional study aimed to extend the literature on childhood adversity by examining the unique associations between potentially traumatic events (PTEs) and a range of mental health concerns, including domain-specific versus comorbid concerns. Participants were 11,877 preadolescents (47.8% female, 15.0% Black, 20.3% Hispanic/Latinx, Mage  = 9.5 years) taking part in the Adolescent Brain and Cognitive Development (ABCD) Study® . The Kiddie Schedule for Affective Disorders and Schizophrenia was used to measure PTEs and caregiver- and child-reported mental health concerns. Adjusted odds ratios (aORs) were used for the outcomes of interest. Overall, PTEs were consistently associated with increased odds of experiencing comorbid posttraumatic stress disorder (PTSD), internalizing disorders, and externalizing disorders, significant AORs = 1.34-4.30, after accounting for children's experiences of other PTEs and polyvictimization. In contrast, PTEs were generally not associated with meeting the criteria for diagnoses within only one domain (i.e., internalizing-only or externalizing-only diagnoses). We also found PTEs to be differentially related to the various mental health outcomes. In particular, witnessing domestic violence was consistently associated with children's psychopathology. Other PTEs, such as witnessing community violence, were not associated with children's psychopathology in the final model. Associations between PTEs and mental health concerns did not differ as a function of sex. Overall, the results support the notion that PTEs are associated with comorbid concerns rather than individual disorders. These findings have important implications for the screening of PTEs, continued research on the conceptualization of traumatic stress, and the importance of accounting for comorbidities across mental health domains.


Domestic Violence , Stress Disorders, Post-Traumatic , Adolescent , Brain , Child , Cognition , Cross-Sectional Studies , Domestic Violence/psychology , Female , Humans , Male , Stress Disorders, Post-Traumatic/epidemiology , Stress Disorders, Post-Traumatic/psychology
19.
J Exp Med ; 219(3)2022 03 07.
Article En | MEDLINE | ID: mdl-35089323

Inflammation is associated with bone marrow failure syndromes, but how specific molecules impact the bone marrow microenvironment is not well elucidated. We report a novel role for the miR-145 target, Toll/interleukin-1 receptor domain containing adaptor protein (TIRAP), in driving bone marrow failure. We show that TIRAP is overexpressed in various types of myelodysplastic syndromes (MDS) and suppresses all three major hematopoietic lineages. TIRAP expression promotes up-regulation of Ifnγ, leading to myelosuppression through Ifnγ-Ifnγr-mediated release of the alarmin, Hmgb1, which disrupts the bone marrow endothelial niche. Deletion of Ifnγ blocks Hmgb1 release and is sufficient to reverse the endothelial defect and restore myelopoiesis. Contrary to current dogma, TIRAP-activated Ifnγ-driven bone marrow suppression is independent of T cell function or pyroptosis. In the absence of Ifnγ, TIRAP drives myeloproliferation, implicating Ifnγ in suppressing the transformation of MDS to acute leukemia. These findings reveal novel, noncanonical roles of TIRAP, Hmgb1, and Ifnγ in the bone marrow microenvironment and provide insight into the pathophysiology of preleukemic syndromes.


Bone Marrow Failure Disorders/etiology , Bone Marrow Failure Disorders/metabolism , Endothelium/metabolism , HMGB1 Protein/metabolism , Interferon-gamma/metabolism , Membrane Glycoproteins/genetics , Myelopoiesis/genetics , Receptors, Interleukin-1/genetics , Animals , Biomarkers , Bone Marrow Failure Disorders/pathology , Cellular Microenvironment/genetics , Disease Susceptibility , Gene Expression , Hematopoiesis/genetics , Membrane Glycoproteins/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Myeloproliferative Disorders/etiology , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , Receptors, Interleukin-1/metabolism
20.
AIDS ; 36(4): 513-524, 2022 03 15.
Article En | MEDLINE | ID: mdl-34860196

OBJECTIVES: Tobacco smoking is linked to cognitive deficits and greater white matter (WM) abnormalities in people with HIV disease (PWH). Whether tobacco smoking additionally contributes to brain atrophy in PWH is unknown and was evaluated in this study. DESIGN: We used a 2 × 2 design that included 83 PWH (43 nonsmokers, 40 smokers) and 171 HIV-seronegative (SN, 106 nonsmokers, 65 smokers) participants and assessed their brain structure and cognitive function. METHODS: Selected subcortical volumes, voxel-wise cortical volumes and thickness, and total WM volume were analyzed using FreeSurfer. Independent and interactive effects of HIV and smoking were evaluated with two-way analysis of covariance on cognitive domain Z-scores and morphometric measures on T1-weighted MRI. RESULTS: Regardless of smoking status, relative to SN, PWH had smaller brain volumes [basal ganglia, thalami, hippocampi, subcortical gray matter (GM) and cerebral WM volumes (P = 0.002-0.042)], steeper age-related declines in the right superior-parietal (interaction: P < 0.001) volumes, and poorer attention/working memory and learning (P = 0.016-0.027). Regardless of HIV serostatus, smokers tended to have smaller hippocampi than nonsmokers (-0.6%, P = 0.055). PWH smokers had the smallest total and regional subcortical GM and cortical WM volume and poorest cognitive performance. CONCLUSIONS: Tobacco smoking additionally contributed to brain atrophy and cognitive deficits in PWH. The greater brain atrophy in PWH smokers may be due to greater neuronal damage or myelin loss in various brain regions, leading to their poor cognitive performance. Therefore, tobacco smoking may exacerbate or increase the risk for HIV-associated neurocognitive disorders.


Central Nervous System Diseases , HIV Infections , Neurodegenerative Diseases , Atrophy/pathology , Brain/diagnostic imaging , Brain/pathology , Central Nervous System Diseases/pathology , Cognition , HIV Infections/pathology , Humans , Magnetic Resonance Imaging , Neurodegenerative Diseases/pathology , Tobacco Smoking/adverse effects
...