Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 15(3): 5689-5695, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33651607

ABSTRACT

A ferroelectric semiconductor junction is a promising two-terminal ferroelectric device for nonvolatile memory and neuromorphic computing applications. In this work, we propose and report the experimental demonstration of asymmetric metal/α-In2Se3/Si crossbar ferroelectric semiconductor junctions (c-FSJs). The depletion in doped Si is used to enhance the modulation of the effective Schottky barrier height through the ferroelectric polarization. A high-performance α-In2Se3 c-FSJ is achieved with a high on/off ratio > 104 at room temperature, on/off ratio > 103 at an elevated temperature of 140 °C, retention > 104 s, and endurance > 106 cycles. The on/off ratio of the α-In2Se3 asymmetric FSJs can be further enhanced to >108 by introducing a metal/α-In2Se3/insulator/metal structure.

2.
Nano Lett ; 20(11): 7919-7926, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33054222

ABSTRACT

Electric-field-driven spintronic devices are considered promising candidates for beyond CMOS logic and memory applications thanks to their potential for ultralow energy switching and nonvolatility. In this work, we have developed a comprehensive modeling framework to understand the fundamental physics of the switching mechanisms of the antiferromagnet/ferromagnet heterojunction by taking BiFeO3/CoFe heterojunctions as an example. The models are calibrated with experimental results and demonstrate that the switching of the ferromagnet in the antiferromagnet/ferromagnet heterojunction is caused by the rotation of the Neel vector in the antiferromagnet and is not driven by the unidirectional exchange bias at the interface as was previously speculated. Additionally, we demonstrate that the fundamental limit of the switching time of the ferromagnet is in the subnanosecond regime. The geometric dependence and the thermal stability of the antiferromagnet/ferromagnet heterojunction are also explored. Our simulation results provide the critical metrics for designing magnetoelectric devices.

3.
Sci Rep ; 5: 9861, 2015 May 08.
Article in English | MEDLINE | ID: mdl-25955353

ABSTRACT

The possibility of using spin waves for information transmission and processing has been an area of active research due to the unique ability to manipulate the amplitude and phase of the spin waves for building complex logic circuits with less physical resources and low power consumption. Previous proposals on spin wave logic circuits have suggested the idea of utilizing the magneto-electric effect for spin wave amplification and amplitude- or phase-dependent switching of magneto-electric cells. Here, we propose a comprehensive scheme for building a clocked non-volatile spin wave device by introducing a charge-to-spin converter that translates information from electrical domain to spin domain, magneto-electric spin wave repeaters that operate in three different regimes--spin wave transmitter, non-volatile memory and spin wave detector, and a novel clocking scheme that ensures sequential transmission of information and non-reciprocity. The proposed device satisfies the five essential requirements for logic application: nonlinearity, amplification, concatenability, feedback prevention, and complete set of Boolean operations.

SELECTION OF CITATIONS
SEARCH DETAIL