Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
J Formos Med Assoc ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38965008

ABSTRACT

BACKGROUND: Ultrasonography is used to diagnose carpal tunnel syndrome (CTS) according to various criteria. This diagnostic meta-analysis aimed to evaluate the efficacy of ultrasonography for diagnosing CTS, focusing on the cross-sectional area (CSA) of the median nerve (MN) at the inlet of the carpal tunnel and regional variations in diagnostic thresholds between Asian and non-Asian populations. METHODS: A comprehensive literature search was conducted using PubMed, Embase, and the Cochrane Library. The risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). Patient demographic data, diagnostic "gold standards", CSA cutoff values, and diagnostic results were extracted. Meta-analysis was performed to determine the sensitivity, specificity, and optimal CSA cutoff values. RESULTS: For the 25 included studies, a combined sensitivity of 88% and specificity of 84% for CSA measurements at the carpal tunnel inlet were obtained. The Asian group had a sensitivity of 84% and specificity of 86%, while the non-Asian group had a sensitivity of 91% and specificity of 82%. The mean CSA in the Asian group was significantly lower than that in the non-Asian group (12.93 mm2 and 14.77 mm2, respectively; p = 0.042). For the Asian group, the summary receiver operating characteristic curve had an area under the curve (AUC) of 0.92 with an optimal cutoff of 10.5 mm2; for the non-Asian group, an AUC of 0.94 was obtained with a cutoff of 11.5 mm2. CONCLUSION: Ultrasonography is a reliable diagnostic method for CTS, with distinct optimal cutoff values observed between Asian and non-Asian populations. Therefore, population-specific diagnostic criteria for CTS are recommended.

2.
Curr Res Microb Sci ; 7: 100249, 2024.
Article in English | MEDLINE | ID: mdl-38974668

ABSTRACT

Porphyromonas gingivalis uses a variety of mechanisms to actively interact with and promote the hydrolysis of red blood cells (RBCs) to obtain iron in the form of heme. In this study, we investigated the function of lipoprotein PG1881 which was previously shown to be up-regulated during subsurface growth and selectively enriched on outer membrane vesicles (OMVs). Our results show that wildtype strain W83 formed large aggregates encompassing RBCs whereas the PG1881 deletion mutant remained predominately as individual cells. Using a PG1881 antibody, immunofluorescence revealed that the wildtype strain's aggregation to RBCs involves an extracellular matrix enriched with PG1881. Our findings discover that RBCs elicit cell aggregation and matrix formation by P. gingivalis and that this process is promoted by an OMV-specific lipoprotein. We propose this strategy is advantageous for nutrient acquisition as well as dissemination from the oral cavity and survival of this periodontal pathogen.

4.
bioRxiv ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38712116

ABSTRACT

The centromere is the chromosomal locus that recruits the kinetochore, directing faithful propagation of the genome during cell division. The kinetochore has been interrogated by electron microscopy since the middle of the last century, but with methodologies that compromised fine structure. Using cryo-ET on human mitotic chromosomes, we reveal a distinctive architecture at the centromere: clustered 20-25 nm nucleosome-associated complexes within chromatin clearings that delineate them from surrounding chromatin. Centromere components CENP-C and CENP-N are each required for the integrity of the complexes, while CENP-C is also required to maintain the chromatin clearing. We further visualize the scaffold of the fibrous corona, a structure amplified at unattached kinetochores, revealing crescent-shaped parallel arrays of fibrils that extend >1 µm. Thus, we reveal how the organization of centromeric chromatin creates a clearing at the site of kinetochore formation as well as the nature of kinetochore amplification mediated by corona fibrils.

5.
Nat Commun ; 15(1): 2660, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531877

ABSTRACT

Ultrastructure of human brain tissue has traditionally been examined using electron microscopy (EM) following fixation, staining, and sectioning, which limit resolution and introduce artifacts. Alternatively, cryo-electron tomography (cryo-ET) allows higher resolution imaging of unfixed cellular samples while preserving architecture, but it requires samples to be vitreous and thin enough for transmission EM. Due to these requirements, cryo-ET has yet to be employed to investigate unfixed, never previously frozen human brain tissue. Here we present a method for generating lamellae in human brain tissue obtained at time of autopsy that can be imaged via cryo-ET. We vitrify the tissue via plunge-freezing and use xenon plasma focused ion beam (FIB) milling to generate lamellae directly on-grid at variable depth inside the tissue. Lamellae generated in Alzheimer's disease brain tissue reveal intact subcellular structures including components of autophagy and potential pathologic tau fibrils. Furthermore, we reveal intact compact myelin and functional cytoplasmic expansions. These images indicate that plasma FIB milling with cryo-ET may be used to elucidate nanoscale structures within the human brain.


Subject(s)
Brain , Electron Microscope Tomography , Humans , Electron Microscope Tomography/methods , Cryoelectron Microscopy/methods , Microscopy, Electron, Transmission , Autopsy
6.
Nat Commun ; 15(1): 379, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38191574

ABSTRACT

In Apicomplexa, rhoptry discharge is essential for invasion and involves an apical vesicle (AV) docking one or two rhoptries to a macromolecular secretory apparatus. Toxoplasma gondii is armed with 10-12 rhoptries and 5-6 microtubule-associated vesicles (MVs) presumably for iterative rhoptry discharge. Here, we have addressed the localization and functional significance of two intraconoidal microtubule (ICMT)-associated proteins instrumental for invasion. Mechanistically, depletion of ICMAP2 leads to a dissociation of the ICMTs, their detachment from the conoid and dispersion of MVs and rhoptries. ICMAP3 exists in two isoforms that contribute to the control of the ICMTs length and the docking of the two rhoptries at the AV, respectively. This study illuminates the central role ICMTs play in scaffolding the discharge of multiple rhoptries. This process is instrumental for virulence in the mouse model of infection and in addition promotes sterile protection against T. gondii via the release of key effectors inducing immunity.


Subject(s)
Toxoplasma , Animals , Mice , Microtubule-Associated Proteins , Cytoskeleton , Microtubules , Biological Transport
7.
Curr Opin Struct Biol ; 84: 102765, 2024 02.
Article in English | MEDLINE | ID: mdl-38181688

ABSTRACT

Cryo-electron microscopy single particle analysis (cryo-EM SPA) and cryo-electron tomography (cryo-ET) have historically been employed as distinct approaches for investigating molecular structures of disparate sample types, focusing on highly purified biological macromolecules and in situ cellular contexts, respectively. However, these techniques offer inherently complementary structural insights that, when combined, provide a more comprehensive understanding of complex biological systems. For example, if both techniques are applied to the same purified biological macromolecules, cryo-ET has the ability to resolve highly flexible yet strong signal features on an individual target molecule which will not be preserved in the high-resolution cryo-EM SPA results. In this review, we highlight recent achievements utilizing such applications to unveil new insights into the chromatin assembly and activities of DNA-protein assemblies. This convergence of cryo-EM SPA and cryo-ET holds great promise for elucidating new structural aspects of these essential molecular processes.


Subject(s)
Electron Microscope Tomography , Single Molecule Imaging , Cryoelectron Microscopy/methods , Proteins/chemistry , Molecular Structure
8.
J Antimicrob Chemother ; 78(10): 2581-2590, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37671807

ABSTRACT

OBJECTIVES: The rise of MDR Gram-negative bacteria (GNB), especially those resistant to last-resort drugs such as carbapenems and colistin, is a global health risk and calls for increased efforts to discover new antimicrobial compounds. We previously reported that polyimidazolium (PIM) compounds exhibited significant antimicrobial activity and minimal mammalian cytotoxicity. However, their mechanism of action is relatively unknown. We examined the efficacy and mechanism of action of a hydrophilic PIM (PIM5) against colistin- and meropenem-resistant clinical isolates. METHODS: MIC and time-kill testing was performed for drug-resistant Escherichia coli and Klebsiella pneumoniae clinical isolates. N-phenyl-1-naphthylamine and propidium iodide dyes were employed to determine membrane permeabilization. Spontaneous resistant mutants and single deletion mutants were generated to understand potential resistance mechanisms to the drug. RESULTS: PIM5 had the same effectiveness against colistin- and meropenem-resistant strains as susceptible strains of GNB. PIM5 exhibited a rapid bactericidal effect independent of bacterial growth phase and was especially effective in water. The polymer disrupts both the outer and cytoplasmic membranes. PIM5 binds and intercalates into bacterial genomic DNA upon entry of cells. GNB do not develop high resistance to PIM5. However, the susceptibility and uptake of the polymer is moderately affected by mutations in the two-component histidine kinase sensor BaeS. PIM5 has negligible cytotoxicity on human cells at bacterial-killing concentrations, comparable to the commercial antibiotics polymyxin B and colistin. CONCLUSIONS: PIM5 is a potent broad-spectrum antibiotic targeting GNB resistant to last-resort antibiotics.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Animals , Humans , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Meropenem/pharmacology , Gram-Negative Bacteria , Anti-Infective Agents/pharmacology , Escherichia coli/genetics , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial , Mammals
9.
Nat Commun ; 14(1): 5464, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37673860

ABSTRACT

The abuse of antibiotics has led to the emergence of multidrug-resistant microbial pathogens, presenting a pressing challenge in global healthcare. Membrane-disrupting antimicrobial peptides (AMPs) combat so-called superbugs via mechanisms different than conventional antibiotics and have good application prospects in medicine, agriculture, and the food industry. However, the mechanism-of-action of AMPs has not been fully characterized at the cellular level due to a lack of high-resolution imaging technologies that can capture cellular-membrane disruption events in the hydrated state. Previously, we reported PepD2M, a de novo-designed AMP with potent and wide-spectrum bactericidal and fungicidal activity. In this study, we use cryo-electron tomography (cryo-ET) and high-speed atomic force microscopy (HS-AFM) to directly visualize the pepD2M-induced disruption of the outer and inner membranes of the Gram-negative bacterium Escherichia coli, and compared with a well-known pore-forming peptide, melittin. Our high-resolution cryo-ET images reveal how pepD2M disrupts the E. coli membrane using a carpet/detergent-like mechanism. Our studies reveal the direct membrane-disrupting consequence of AMPs on the bacterial membrane by cryo-ET, and this information provides critical insights into the mechanisms of this class of antimicrobial agents.


Subject(s)
Antimicrobial Peptides , Electron Microscope Tomography , Escherichia coli , Cell Physiological Phenomena , Anti-Bacterial Agents/pharmacology
10.
bioRxiv ; 2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37745569

ABSTRACT

Ultrastructure of human brain tissue has traditionally been examined using electron microscopy (EM) following chemical fixation, staining, and mechanical sectioning, which limit attainable resolution and introduce artifacts. Alternatively, cryo-electron tomography (cryo-ET) offers the potential to image unfixed cellular samples at higher resolution while preserving their native structures, but it requires samples to be frozen free from crystalline ice and thin enough to image via transmission EM. Due to these requirements, cryo-ET has yet to be employed to investigate the native ultrastructure of unfixed, never previously frozen human brain tissue. Here we present a method for generating lamellae in human brain tissue obtained at time of autopsy that can be imaged via cryo-ET. We vitrify the tissue directly on cryo-EM grids via plunge-freezing, as opposed to high pressure freezing which is generally used for thick samples. Following vitrification, we use xenon plasma focused ion beam (FIB) milling to generate lamellae directly on-grid. In comparison to gallium FIB, which is commonly used for biological samples, xenon plasma FIB is powerful enough to efficiently mill large volume samples, such as human brain tissue. Additionally, our approach allows for lamellae to be generated at variable depth inside the tissue as opposed to being limited to starting at the surface of the tissue. Lamellae generated in Alzheimer's disease brain tissue and imaged by cryo-ET reveal intact subcellular structures including components of autophagy and potential tau fibrils. Furthermore, we visualize myelin revealing intact compact myelin and functional cytoplasmic expansions such as cytoplasmic channels and the inner tongue. From these images we also measure the dimensions of myelin membranes, providing insight into how myelin basic protein forces out oligodendrocyte cytoplasm to form compact myelin and tightly links intracellular polar head groups of the oligodendrocyte plasma membrane. This approach provides a first view of unfixed, never previously frozen human brain tissue prepared by cryo-plasma FIB milling and imaged at high resolution by cryo-ET.

11.
Biophys J ; 122(18): 3768-3782, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37533259

ABSTRACT

Mitochondria adapt to changing cellular environments, stress stimuli, and metabolic demands through dramatic morphological remodeling of their shape, and thus function. Such mitochondrial dynamics is often dependent on cytoskeletal filament interactions. However, the precise organization of these filamentous assemblies remains speculative. Here, we apply cryogenic electron tomography to directly image the nanoscale architecture of the cytoskeletal-membrane interactions involved in mitochondrial dynamics in response to damage. We induced mitochondrial damage via membrane depolarization, a cellular stress associated with mitochondrial fragmentation and mitophagy. We find that, in response to acute membrane depolarization, mammalian mitochondria predominantly organize into tubular morphology that abundantly displays constrictions. We observe long bundles of both unbranched actin and septin filaments enriched at these constrictions. We also observed septin-microtubule interactions at these sites and elsewhere, suggesting that these two filaments guide each other in the cytosolic space. Together, our results provide empirical parameters for the architecture of mitochondrial constriction factors to validate/refine existing models and inform the development of new ones.


Subject(s)
Cytoskeleton , Septins , Animals , Constriction , Septins/metabolism , Cytoskeleton/metabolism , Mitochondria/metabolism , Tomography , Mitochondrial Dynamics , Mammals/metabolism
12.
Nat Commun ; 14(1): 4800, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37558667

ABSTRACT

The phylum Apicomplexa comprises important eukaryotic parasites that invade host tissues and cells using a unique mechanism of gliding motility. Gliding is powered by actomyosin motors that translocate host-attached surface adhesins along the parasite cell body. Actin filaments (F-actin) generated by Formin1 play a central role in this critical parasitic activity. However, their subcellular origin, path and ultrastructural arrangement are poorly understood. Here we used cryo-electron tomography to image motile Cryptosporidium parvum sporozoites and reveal the cellular architecture of F-actin at nanometer-scale resolution. We demonstrate that F-actin nucleates at the apically positioned preconoidal rings and is channeled into the pellicular space between the parasite plasma membrane and the inner membrane complex in a conoid extrusion-dependent manner. Within the pellicular space, filaments on the inner membrane complex surface appear to guide the apico-basal flux of F-actin. F-actin concordantly accumulates at the basal end of the parasite. Finally, analyzing a Formin1-depleted Toxoplasma gondii mutant pinpoints the upper preconoidal ring as the conserved nucleation hub for F-actin in Cryptosporidium and Toxoplasma. Together, we provide an ultrastructural model for the life cycle of F-actin for apicomplexan gliding motility.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Parasites , Toxoplasma , Animals , Humans , Parasites/metabolism , Actins/metabolism , Electron Microscope Tomography , Actin Cytoskeleton/metabolism , Toxoplasma/metabolism , Protozoan Proteins/metabolism
13.
bioRxiv ; 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37503120

ABSTRACT

Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that utilizes its type III secretion systems (T3SSs) to inject virulence factors into the host cell and colonize the host. In turn, a subset of cytosolic immune receptors respond to T3SS ligands by forming multimeric signaling complexes called inflammasomes, which activate caspases that induce interleukin-1 (IL-1) family cytokine release and an inflammatory form of cell death called pyroptosis. Human macrophages mount a multifaceted inflammasome response to Salmonella infection that ultimately restricts intracellular bacterial replication. However, how inflammasomes restrict Salmonella replication remains unknown. We find that caspase-1 is essential for mediating inflammasome responses to Salmonella and subsequent restriction of bacterial replication within human macrophages, with caspase-4 contributing as well. We also demonstrate that the downstream pore-forming protein gasdermin D (GSDMD) and ninjurin-1 (NINJ1), a mediator of terminal cell lysis, play a role in controlling Salmonella replication in human macrophages. Notably, in the absence of inflammasome responses, we observed hyperreplication of Salmonella within the cytosol of infected cells, and we also observed increased bacterial replication within vacuoles, suggesting that inflammasomes control Salmonella replication primarily within the cytosol and also within vacuoles. These findings reveal that inflammatory caspases and pyroptotic factors mediate inflammasome responses that restrict the subcellular localization of intracellular Salmonella replication within human macrophages.

14.
Nat Microbiol ; 8(7): 1267-1279, 2023 07.
Article in English | MEDLINE | ID: mdl-37349588

ABSTRACT

Bdellovibrio bacteriovorus is a microbial predator that offers promise as a living antibiotic for its ability to kill Gram-negative bacteria, including human pathogens. Even after six decades of study, fundamental details of its predation cycle remain mysterious. Here we used cryo-electron tomography to comprehensively image the lifecycle of B. bacteriovorus at nanometre-scale resolution. With high-resolution images of predation in a native (hydrated, unstained) state, we discover several surprising features of the process, including macromolecular complexes involved in prey attachment/invasion and a flexible portal structure lining a hole in the prey peptidoglycan that tightly seals the prey outer membrane around the predator during entry. Unexpectedly, we find that B. bacteriovorus does not shed its flagellum during invasion, but rather resorbs it into its periplasm for degradation. Finally, following growth and division in the bdelloplast, we observe a transient and extensive ribosomal lattice on the condensed B. bacteriovorus nucleoid.


Subject(s)
Bdellovibrio bacteriovorus , Bdellovibrio , Humans , Animals , Bdellovibrio/metabolism , Electron Microscope Tomography , Predatory Behavior
15.
Proc Natl Acad Sci U S A ; 120(15): e2213149120, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37027429

ABSTRACT

Cryoelectron tomography directly visualizes heterogeneous macromolecular structures in their native and complex cellular environments. However, existing computer-assisted structure sorting approaches are low throughput or inherently limited due to their dependency on available templates and manual labels. Here, we introduce a high-throughput template-and-label-free deep learning approach, Deep Iterative Subtomogram Clustering Approach (DISCA), that automatically detects subsets of homogeneous structures by learning and modeling 3D structural features and their distributions. Evaluation on five experimental cryo-ET datasets shows that an unsupervised deep learning based method can detect diverse structures with a wide range of molecular sizes. This unsupervised detection paves the way for systematic unbiased recognition of macromolecular complexes in situ.


Subject(s)
Electron Microscope Tomography , Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Cluster Analysis , Molecular Structure , Electron Microscope Tomography/methods , Macromolecular Substances/chemistry , Cryoelectron Microscopy/methods
16.
J Mol Biol ; 435(9): 168068, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37003470

ABSTRACT

Cryo-electron tomography can uniquely probe the native cellular environment for macromolecular structures. Tomograms feature complex data with densities of diverse, densely crowded macromolecular complexes, low signal-to-noise, and artifacts such as the missing wedge effect. Post-processing of this data generally involves isolating regions or particles of interest from tomograms, organizing them into related groups, and rendering final structures through subtomogram averaging. Template-matching and reference-based structure determination are popular analysis methods but are vulnerable to biases and can often require significant user input. Most importantly, these approaches cannot identify novel complexes that reside within the imaged cellular environment. To reliably extract and resolve structures of interest, efficient and unbiased approaches are therefore of great value. This review highlights notable computational software and discusses how they contribute to making automated structural pattern discovery a possibility. Perspectives emphasizing the importance of features for user-friendliness and accessibility are also presented.


Subject(s)
Electron Microscope Tomography , Software , Electron Microscope Tomography/methods , Macromolecular Substances/chemistry , Cryoelectron Microscopy/methods , Image Processing, Computer-Assisted/methods
17.
Mol Cell ; 83(4): 574-588.e11, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36731470

ABSTRACT

Most eukaryotic promoter regions are divergently transcribed. As the RNA polymerase II pre-initiation complex (PIC) is intrinsically asymmetric and responsible for transcription in a single direction, it is unknown how divergent transcription arises. Here, the Saccharomyces cerevisiae Mediator complexed with a PIC (Med-PIC) was assembled on a divergent promoter and analyzed by cryoelectron microscopy. The structure reveals two distinct Med-PICs forming a dimer through the Mediator tail module, induced by a homodimeric activator protein localized near the dimerization interface. The tail dimer is associated with ∼80-bp upstream DNA, such that two flanking core promoter regions are positioned and oriented in a suitable form for PIC assembly in opposite directions. Also, cryoelectron tomography visualized the progress of the PIC assembly on the two core promoter regions, providing direct evidence for the role of the Med-PIC dimer in divergent transcription.


Subject(s)
RNA Polymerase II , Saccharomyces cerevisiae Proteins , RNA Polymerase II/metabolism , Cryoelectron Microscopy , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Promoter Regions, Genetic , Transcription, Genetic , Mediator Complex/genetics , Transcription Initiation, Genetic
18.
Methods Mol Biol ; 2646: 211-248, 2023.
Article in English | MEDLINE | ID: mdl-36842118

ABSTRACT

Bacterial surface nanomachines are often refractory to structural determination in their intact form due to their extensive association with the cell envelope preventing them from being properly purified for traditional structural biology methods. Cryo-electron tomography (cryo-ET) is an emerging branch of cryo-electron microscopy that can visualize supramolecular complexes directly inside frozen-hydrated cells in 3D at nanometer resolution, therefore posing a unique capability to study the intact structures of bacterial surface nanomachines in situ and reveal their molecular association with other cellular components. Furthermore, the resolution of cryo-ET is continually improving alongside methodological advancement. Here, using the type IV pilus machine in Myxococcus xanthus as an example, we describe a step-by-step workflow for in situ structure determination including sample preparation and screening, microscope and camera tuning, tilt series acquisition, data processing and tomogram reconstruction, subtomogram averaging, and structural analysis.


Subject(s)
Electron Microscope Tomography , Image Processing, Computer-Assisted , Image Processing, Computer-Assisted/methods , Electron Microscope Tomography/methods , Cryoelectron Microscopy/methods , Workflow
19.
EMBO J ; 41(22): e111158, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36245278

ABSTRACT

Apicomplexan parasites possess secretory organelles called rhoptries that undergo regulated exocytosis upon contact with the host. This process is essential for the parasitic lifestyle of these pathogens and relies on an exocytic machinery sharing structural features and molecular components with free-living ciliates. However, how the parasites coordinate exocytosis with host interaction is unknown. Here, we performed a Tetrahymena-based transcriptomic screen to uncover novel exocytic factors in Ciliata and conserved in Apicomplexa. We identified membrane-bound proteins, named CRMPs, forming part of a large complex essential for rhoptry secretion and invasion in Toxoplasma. Using cutting-edge imaging tools, including expansion microscopy and cryo-electron tomography, we show that, unlike previously described rhoptry exocytic factors, TgCRMPs are not required for the assembly of the rhoptry secretion machinery and only transiently associate with the exocytic site-prior to the invasion. CRMPs and their partners contain putative host cell-binding domains, and CRMPa shares similarities with GPCR proteins. Collectively our data imply that the CRMP complex acts as a host-molecular sensor to ensure that rhoptry exocytosis occurs when the parasite contacts the host cell.


Subject(s)
Toxoplasma , Toxoplasma/genetics , Toxoplasma/metabolism , Protozoan Proteins/metabolism , Organelles/metabolism , Exocytosis , Membrane Proteins/metabolism , Host-Parasite Interactions
20.
Microbiol Spectr ; 10(5): e0129022, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36200915

ABSTRACT

Secretion of high-molecular-weight polysaccharides across the bacterial envelope is ubiquitous, as it enhances prokaryotic survival in (a)biotic settings. Such polymers are often assembled by Wzx/Wzy- or ABC transporter-dependent schemes implicating outer membrane (OM) polysaccharide export (OPX) proteins in cell-surface polymer translocation. In the social predatory bacterium Myxococcus xanthus, the exopolysaccharide (EPS) pathway WzaX, major spore coat (MASC) pathway WzaS, and biosurfactant polysaccharide (BPS) pathway WzaB were herein found to be truncated OPX homologues of Escherichia coli Wza lacking OM-spanning α-helices. Comparative genomics across all bacteria (>91,000 OPX proteins identified and analyzed), complemented with cryo-electron tomography cell-envelope analyses, revealed such "truncated" WzaX/S/B architecture to be the most common among three defined OPX-protein structural classes independent of periplasm thickness. Fold recognition and deep learning revealed the conserved M. xanthus proteins MXAN_7418/3226/1916 (encoded beside wzaX/S/B, respectively) to be integral OM ß-barrels, with structural homology to the poly-N-acetyl-d-glucosamine synthase-dependent pathway porin PgaA. Such bacterial porins were identified near numerous genes for all three OPX protein classes. Interior MXAN_7418/3226/1916 ß-barrel electrostatics were found to match properties of their associated polymers. With MXAN_3226 essential for MASC export, and MXAN_7418 herein shown to mediate EPS translocation, we have designated this new secretion machinery component "Wzp" (i.e., Wz porin), with the final step of M. xanthus EPS/MASC/BPS secretion across the OM now proposed to be mediated by WzpX/S/B (i.e., MXAN_7418/3226/1916). Importantly, these data support a novel and widespread secretion paradigm for polysaccharide biosynthesis pathways in which those containing OPX components that cannot span the OM instead utilize ß-barrel porins to mediate polysaccharide transport across the OM. IMPORTANCE Diverse bacteria assemble and secrete polysaccharides that alter their physiologies through modulation of motility, biofilm formation, and host immune system evasion. Most such pathways require outer membrane (OM) polysaccharide export (OPX) proteins for sugar-polymer transport to the cell surface. In the prototypic Escherichia coli Group-1-capsule biosynthesis system, eight copies of this canonical OPX protein cross the OM with an α-helix, forming a polysaccharide-export pore. Herein, we instead reveal that most OPX proteins across all bacteria lack this α-helix, raising questions as to the manner by which most secreted polysaccharides actually exit cells. In the model developmental bacterium Myxococcus xanthus, we show this process to depend on OPX-coupled OM-spanning ß-barrel porins, with similar porins encoded near numerous OPX genes in diverse bacteria. Knowledge of the terminal polysaccharide secretion step will enable development of antimicrobial compounds targeted to blocking polymer export from outside the cell, thus bypassing any requirements for antimicrobial compound uptake by the cell.


Subject(s)
Escherichia coli Proteins , Porins , Porins/genetics , Porins/metabolism , Bacterial Outer Membrane , Polymers/chemistry , Polymers/metabolism , Acetylglucosamine/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Polysaccharides , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , ATP-Binding Cassette Transporters/metabolism , Sugars/metabolism , Bacterial Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...