Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 238
1.
Commun Biol ; 7(1): 51, 2024 01 06.
Article En | MEDLINE | ID: mdl-38184739

Carbapenem-resistant Escherichia coli (CREC) poses a severe global public health risk. This study reveals the worldwide geographic spreading patterns and spatiotemporal distribution characteristics of resistance genes in 7918 CREC isolates belonging to 497 sequence types (ST) and originating from 75 countries. In the last decade, there has been a transition in the prevailing STs from highly virulent ST131 and ST38 to higher antibiotic-resistant ST410 and ST167. The rise of multi-drug resistant strains of CREC carrying plasmids with extended-spectrum beta-lactamase (ESBL) resistance genes could be attributed to three important instances of host-switching events. The spread of CREC was associated with the changing trends in blaNDM-5, blaKPC-2, and blaOXA-48, as well as the plasmids IncFI, IncFII, and IncI. There were intercontinental geographic transfers of major CREC strains. Various crucial transmission hubs and patterns have been identified for ST131 in the United Kingdom, Italy, the United States, and China, ST167 in India, France, Egypt, and the United States, and ST410 in Thailand, Israel, the United Kingdom, France, and the United States. This work is valuable in managing CREC infections and preventing CREC occurrence and transmission inside healthcare settings and among diverse hosts.


Carbapenem-Resistant Enterobacteriaceae , Escherichia coli/genetics , Public Health , Anti-Bacterial Agents , Carbapenems/pharmacology
2.
Braz J Microbiol ; 55(1): 943-953, 2024 Mar.
Article En | MEDLINE | ID: mdl-38217795

Mycoplasma hyopneumoniae (M. hyopneumoniae) is a primary agent of porcine enzootic pneumonia, a disease that causes significant economic losses to pig farming worldwide. Commercial vaccines induce partial protection, evidencing the need for a new vaccine against M. hyopneumoniae. In our work, three chimeric proteins were constructed, composed of potentially immunogenic domains from M. hyopneumoniae proteins. We designed three chimeric proteins (Q1, Q2, and Q3) based on bioinformatics analysis that identified five potential proteins with immunogenic potential (MHP418, MHP372, MHP199, P97, and MHP0461). The chimeric proteins were inoculated in the murine model to evaluate the immune response. The mice vaccinated with the chimeras presented IgG and IgG1 against proteins of M. hyopneumoniae. There was induction of IgG in mice immunized with Q3 starting from 30 days post-vaccination, and groups Q1 and Q2 showed induction at 45 days. Mice of the group immunized with Q3 showed the production of IgA. In addition, the mice inoculated with chimeric proteins showed a proinflammatory cytokine response; Q1 demonstrated higher levels of TNF, IL-6, IL2, and IL-17. In contrast, animals immunized with Q2 showed an increase in the concentrations of TNF, IL-6, and IL-4, whereas those immunized with Q3 exhibited an increase in the concentrations of TNF, IL-6, IL-10, and IL-4. The results of the present study indicate that these three chimeric proteins can be used in future vaccine trials with swine because of the promising antigenicity.


Mycoplasma hyopneumoniae , Animals , Swine , Mice , Mycoplasma hyopneumoniae/genetics , Interleukin-4 , Interleukin-6 , Bacterial Vaccines/genetics , Immunoglobulin G , Recombinant Fusion Proteins/genetics
3.
J Proteomics ; 292: 105058, 2024 02 10.
Article En | MEDLINE | ID: mdl-38065354

Bacteria typically produce membrane vesicles (MVs) at varying levels depending on the surrounding environments. Gram-negative bacterial outer membrane vesicles (OMVs) have been extensively studied for over 30 years, but MVs from Gram-positive bacteria only recently have been a focus of research. In the present study, we isolated MVs from Mycobacterium avium subsp. paratuberculosis (MAP) and analyzed their protein composition using LC-MS/MS. A total of 316 overlapping proteins from two independent preparations were identified in our study, and topology prediction showed these cargo proteins have different subcellular localization patterns. When MVs were administered to bovine-derived macrophages, significant up-regulation of pro-inflammatory cytokines was observed via qRT-PCR. Proteome functional annotation revealed that many of these proteins are involved in the cellular protein metabolic process, tRNA aminoacylation, and ATP synthesis. Secretory proteins with high antigenicity and adhesion capability were mapped for B-cell and T-cell epitopes. Antigenic, Immunogenic and IFN-γ inducing B-cell, MHC-I, and MHC-II epitopes were stitched together through linkers to form multi-epitope vaccine (MEV) construct against MAP. Strong binding energy was observed during the docking of the 3D structure of the MEV with the bovine TLR2, suggesting that the putative MEV may be a promising vaccine candidate against MAP. However, in vitro and in vivo analysis is required to prove the immunogenic concept of the MEV which we will follow in our future studies. SIGNIFICANCE: Johne's disease is a chronic infection caused by Mycobacterium avium subsp. paratuberculosis that has a potential link to Crohn's disease in humans. The disease is characterized by persistent diarrhea and enteritis, resulting in significant economic losses due to reduced milk yield and premature culling of infected animals. The dairy industry in the United States alone experiences losses of approximately USD 250 million due to Johne's disease. The current vaccine against Johne's disease is limited by several factors, including variable efficacy, limited duration of protection, interference with diagnostic tests, inability to prevent infection, and logistical and cost-related challenges. Nevertheless, a multiepitope vaccine design approach targeting M. avium subsp. paratuberculosis has the potential to overcome these challenges and offer improved protection against Johne's disease.


Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Vaccines , Humans , Animals , Cattle , Paratuberculosis/diagnosis , Paratuberculosis/microbiology , Mycobacterium avium subsp. paratuberculosis/genetics , Membrane Proteins , Epitopes , Chromatography, Liquid , Proteomics , Tandem Mass Spectrometry
4.
Infect Immun ; 91(12): e0035123, 2023 Dec 12.
Article En | MEDLINE | ID: mdl-37930004

Virulent Glaesserella parasuis may engender systemic infection characterized by fibrinous polyserositis and pneumonia. G. parasuis causes systemic disease through upper respiratory tract infection, but the mechanism has not been fully characterized. Tight junction (TJ) proteins maintain the integrity and impermeability of the epithelial barriers. In this work, we applied the recombinant cytolethal distending toxin (CDT) holotoxin and cdt-deficient mutants to assess whether CDT interacted with TJ proteins of airway tract cells. Our results indicated that CDT induced the TJ occludin (OCLN) expression in newborn pig tracheal epithelial cells within the first 3 hours of bacterial infection, followed by a significant decrease. Overexpression of OCLN in target cells made them more susceptible to G. parasuis adhesion, whereas ablation of OCLN expression by CRISPR/Cas 9 gene editing technology in target cells decreased their susceptibility to bacterial adhesion. In addition, CDT treatment could upregulate the OCLN levels in the lung tissue of C57/BL6 mice. In summary, highly virulent G. parasuis strain SC1401 stimulated the tight junction expression, resulting in higher bacterial adhesion to respiratory tract cells, and this process is closely related to CDT. Our results may provide novel insights into G. parasuis infection and CDT-mediated pathogenesis.


Bacterial Adhesion , Haemophilus Infections , Haemophilus parasuis , Lung , Occludin , Animals , Mice , Epithelial Cells/microbiology , Haemophilus parasuis/genetics , Haemophilus parasuis/pathogenicity , Occludin/genetics , Occludin/metabolism , Swine , Up-Regulation , Haemophilus Infections/metabolism , Haemophilus Infections/microbiology , Lung/microbiology , Mice, Inbred C57BL
5.
Life Sci ; 335: 122243, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-37949211

Disorders of chondrocyte differentiation and endochondral osteogenesis are major underlying factors in skeletal developmental disorders, including tibial dysplasia (TD), osteoarthritis (OA), chondrodysplasia (ACH), and multiple epiphyseal dysplasia (MED). Understanding the cellular and molecular pathogenesis of these disorders is crucial for addressing orthopedic diseases resulting from impaired glycosaminoglycan synthesis. Glycosaminoglycan is a broad term that refers to the glycan component of proteoglycan macromolecules. It is an essential component of the cartilage extracellular matrix and plays a vital role in various biological processes, including gene transcription, signal transduction, and chondrocyte differentiation. Recent studies have demonstrated that glycosaminoglycan biosynthesis plays a regulatory role in chondrocyte differentiation and endochondral osteogenesis by modulating various growth factors and signaling molecules. For instance, glycosaminoglycan is involved in mediating pathways such as Wnt, TGF-ß, FGF, Ihh-PTHrP, and O-GlcNAc glycosylation, interacting with transcription factors SOX9, BMPs, TGF-ß, and Runx2 to regulate chondrocyte differentiation and endochondral osteogenesis. To propose innovative approaches for addressing orthopedic diseases caused by impaired glycosaminoglycan biosynthesis, we conducted a comprehensive review of the molecular mechanisms underlying chondrocyte glycosaminoglycan biosynthesis, which regulates chondrocyte differentiation and endochondral osteogenesis. Our analysis considers the role of genes, glycoproteins, and associated signaling pathways during chondrogenesis and endochondral ossification.


Chondrogenesis , Osteogenesis , Osteogenesis/physiology , Chondrogenesis/physiology , Chondrocytes/metabolism , Transforming Growth Factor beta/metabolism , Glycosaminoglycans/metabolism , Cell Differentiation
6.
Microb Pathog ; 184: 106336, 2023 Nov.
Article En | MEDLINE | ID: mdl-37683832

Pasteurella multocida.(PM) infection is a major cause of avian cholera, but the pathogenesis of the disease is unknown. The purpose of this study was to further understand the host response to infection by using a duck model of PM, 20 female ducks were divided into two groups (n = 10). One group was infected with PM, while the other served as an uninfected control group. The ducks were observed after infection and samples were collected for testing. In this study, we report the mechanism of PM-induced inflammation to further mediate apoptosis and autophagic signaling pathways in liver cells. Our results demonstrated that PM infection initially induces hemorrhagic and necrotic lesions in the liver tissue of duck, promoting inflammasome assembly and release, triggering inflammation. The TLR4/NF-κB axis activated and interacted with multiple inflammation-related proteins, including TNF-α and IL-1ß, which affected apoptosis and autophagy. Tumor necrosis factor induced hepatocyte apoptosis was implicated in a wide range of liver diseases; the release of TNF-α and activation with NF-κB further incite apoptotic pathways,such as Bax/BCL2/caspase to promote apoptotic genes APAF1, Bax, Caspase3, BCL-2, p53, and Cytc expression. Finally, PM-induced autophagy suppressed liver injury by promoting the Beclin-1, LC3B, p62, and mTOR. Thus, liver injury caused by PM via promoting autophagy was induced. In conclusion, we analyzed the liver injury of ducks infected with PM, and confirmed that inflammation appeared in the liver; this was followed by the intricate interplay between inflammation, apoptosis, and autophagy signaling pathways. The observed results provided a reference basis for studying pathogenic mechanisms of PM-host interactions.


Pasteurella multocida , Animals , Female , Pasteurella multocida/metabolism , Ducks , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha , bcl-2-Associated X Protein , Liver/pathology , Inflammation/pathology , Autophagy , Apoptosis
7.
J Virol ; 97(8): e0026723, 2023 08 31.
Article En | MEDLINE | ID: mdl-37582207

Avian leukemia virus subgroup J (ALV-J) causes various diseases associated with tumor formation and decreased fertility and induced immunosuppressive disease, resulting in significant economic losses in the poultry industry globally. Virus usually exploits the host cellular machinery for their replication. Although there are increasing evidences for the cellular proteins involving viral replication, the interaction between ALV-J and host proteins leading to the pivotal steps of viral life cycle are still unclear. Here, we reported that ribonucleoside-diphosphate reductase subunit M2 (RRM2) plays a critical role during ALV-J infection by interacting with capsid protein P27 and activating Wnt/ß-catenin signaling. We found that the expression of RRM2 is effectively increased during ALV-J infection, and that RRM2 facilitates ALV-J replication by interacting with viral capsid protein P27. Furthermore, ALV-J P27 activated Wnt/ß-catenin signaling by promoting ß-catenin entry into the nucleus, and RRM2 activated Wnt/ß-catenin signaling by enhancing its phosphorylation at Ser18 during ALV-J infection. These data suggest that the upregulation of RRM2 expression by ALV-J infection favors viral replication in host cells via activating Wnt/ß-catenin signaling. IMPORTANCE Our results revealed a novel mechanism by which RRM2 facilitates ALV-J growth. That is, the upregulation of RRM2 expression by ALV-J infection favors viral replication by interacting with capsid protein P27 and activating Wnt/ß-catenin pathway in host cells. Furthermore, the phosphorylation of serine at position 18 of RRM2 was verified to be the important factor regulating the activation of Wnt/ß-catenin signaling. This study provides insights for further studies of the molecular mechanism of ALV-J infection.


Avian Leukosis Virus , Avian Leukosis , Ribonucleoside Diphosphate Reductase , Wnt Signaling Pathway , Animals , Avian Leukosis Virus/metabolism , beta Catenin/metabolism , Capsid Proteins/metabolism , Chickens , Ribonucleoside Diphosphate Reductase/metabolism
8.
Int J Biol Macromol ; 244: 125445, 2023 Jul 31.
Article En | MEDLINE | ID: mdl-37336372

Leptospiral immunoglobulin-like (Lig) protein family is a surface-exposed protein from the pathogenic Leptospira. The Lig protein family has been identified as an essential virulence factor of L. interrogan. One of the family members, LigA, contains 13 homologous tandem repeats of bacterial Ig-like (Big) domains in its extracellular portion. It is crucial in binding with the host's Extracellular matrices (ECM) and complement factors. However, its vital role in the invasion and evasion of pathogenic Leptospira, structural details, and domain organization of the extracellular portion of this protein are not explored thoroughly. Here, we described the first high-resolution crystal structure of a variable region segment (LigA8-9) of LigA at 1.87 Å resolution. The structure showed some remarkably distinctive aspects compared with other closely related Immunoglobulin domains. The structure illustrated the relative orientation of two domains and highlighted the role of the linker region in the domain orientation. We also observed an apparent electron density of Ca2+ ions coordinated with a proper interacting geometry within the protein. Molecular dynamic simulations demonstrated the involvement of a linker salt bridge in providing rigidity between the two domains. Our study proposes an overall arrangement of Ig-like domains in the LigA protein. The structural understanding of the extracellular portion of LigA and its interaction with the ECM provides insight into developing new therapeutics directed toward leptospirosis.


Leptospira interrogans , Leptospira , Leptospirosis , Humans , Leptospira/metabolism , Membrane Proteins/metabolism , Leptospira interrogans/metabolism , Antigens, Bacterial/metabolism
9.
Curr Issues Mol Biol ; 45(6): 4529-4543, 2023 May 24.
Article En | MEDLINE | ID: mdl-37367036

Colon cancer is the third most important cancer type, leading to a remarkable number of deaths, indicating the necessity of new biomarkers and therapeutic targets for colon cancer patients. Several transmembrane proteins (TMEMs) are associated with tumor progression and cancer malignancy. However, the clinical significance and biological roles of TMEM211 in cancer, especially in colon cancer, are still unknown. In this study, we found that TMEM211 was highly expressed in tumor tissues and the increased TMEM211 was associated with poor prognosis in colon cancer patients from The Cancer Genome Atlas (TCGA) database. We also showed that abilities regarding migration and invasion were reduced in TMEM211-silenced colon cancer cells (HCT116 and DLD-1). Moreover, TMEM211-silenced colon cancer cells showed decreased levels of Twist1, N-cadherin, Snail and Slug but increased levels of E-cadherin. Levels of phosphorylated ERK, AKT and RelA (NF-κB p65) were also decreased in TMEM211-silenced colon cancer cells. Our findings indicate that TMEM211 regulates epithelial-mesenchymal transition for metastasis through coactivating the ERK, AKT and NF-κB signaling pathways, which might provide a potential prognostic biomarker or therapeutic target for colon cancer patients in the future.

10.
Int J Mol Sci ; 24(10)2023 05 12.
Article En | MEDLINE | ID: mdl-37239984

Glaesserella parasuis (G. parasuis.) is the etiological pathogen of Glässer's disease, which causes high economic losses to the pig industry. The heme-binding protein A precursor (HbpA) was a putative virulence-associated factor proposed to be potential subunit vaccine candidate in G. parasuis. In this study, three monoclonal antibodies (mAb) 5D11, 2H81, and 4F2 against recombinant HbpA (rHbpA) of G. parasuis SH0165 (serotype 5) were generated by fusing SP2/0-Ag14 murine myeloma cells and spleen cells from BALB/c mice immunized with the rHbpA. Indirect enzyme-linked immunosorbent assay (ELISA) and indirect immunofluorescence assay (IFA) demonstrated that the antibody designated 5D11 showed a strong binding affinity with the HbpA protein and was chosen for subsequent experiments. The subtypes of the 5D11 were IgG1/κ chains. Western blot analysis showed that mAb 5D11 could react with all 15 serotype reference strains of G. parasuis. None of the other bacteria tested reacted with 5D11. In addition, a linear B-cell epitope recognized by 5D11 was identified by serial truncations of HbpA protein and then a series of truncated peptides were synthesized to define the minimal region that was required for mAb 5D11 binding. The 5D11 epitope was located on amino acids 324-LPQYEFNLEKAKALLA-339 by testing the 5D11 monoclonal for reactivity with 14 truncations. The minimal epitope 325-PQYEFNLEKAKALLA-339 (designated EP-5D11) was pinpointed by testing the mAb 5D11 for reactivity with a series of synthetic peptides of this region. The epitope was highly conserved among G. parasuis strains, confirmed by alignment analysis. These results indicated that mAb 5D11 and EP-5D11 might potentially be used to develop serological diagnostic tools for G. parasuis. Three-dimensional structural analysis revealed that amino acids of EP-5D11 were in close proximity and may be exposed on the surface of the HbpA protein.


Antibodies, Monoclonal , Epitopes, B-Lymphocyte , Animals , Mice , Swine , Staphylococcal Protein A , Peptides , Enzyme-Linked Immunosorbent Assay , Epitope Mapping
11.
Int J Mol Sci ; 24(10)2023 May 19.
Article En | MEDLINE | ID: mdl-37240342

Areca nut (AN) is used for traditional herbal medicine and social activities in several countries. It was used as early as about A.D. 25-220 as a remedy. Traditionally, AN was applied for several medicinal functions. However, it was also reported to have toxicological effects. In this review article, we updated recent trends of research in addition to acquire new knowledge about AN. First, the history of AN usage from ancient years was described. Then, the chemical components of AN and their biological functions was compared; arecoline is an especially important compound in AN. AN extract has different effects caused by different components. Thus, the dual effects of AN with pharmacological and toxicological effects were summarized. Finally, we described perspectives, trends and challenges of AN. It will provide the insight of removing or modifying the toxic compounds of AN extractions for enhancing their pharmacological activity to treat several diseases in future applications.


Plant Extracts , Plants, Medicinal , Plant Extracts/chemistry , Areca/adverse effects , Areca/chemistry , Nuts/chemistry , Arecoline/pharmacology
12.
J Environ Qual ; 52(4): 829-836, 2023.
Article En | MEDLINE | ID: mdl-37199385

We carried out an investigation to determine the occurrence of Escherichia coli O157:H7 in dairy herds in the Delaware County watershed and to identify the factors that play a role in the likelihood of presence of this organism among animals on these farms. The pathogen poses risk of environmental degradation and health to the inhabitants. A total of 2162 fecal samples were collected per rectum from a representative sample of cattle on 27 dairy farms. The samples were investigated for the presence of E. coli O157:H by initially enriching using a bacteriological media and detection of the pathogen using real-time polymerase chain reaction technique. Escherichia coli O157:H7 was detected in 74% of the herds in the target population and in 3.7% of samples collected. An additional 54 animals were identified that were infected with O157 non-H7 strains of E. coli among 15 farms. Several putative risk factors were associated with the detection of the pathogen on the enrolled farms included age, housing calves indoors, group housing for calves, housing calves in the calf barn, presence of dogs on the farm, and housing post-weaned calves in a cow barn or heifer barn versus a greenhouse. In conclusion, E. coli O157:H7 was present on the dairy farms of Delaware County and may pose a threat to the people that live and work there. The risk associated with the detection of this pathogen could be reduced by adjusting management factors that were identified in this study.


Escherichia coli O157 , Cattle , Animals , Female , Dogs , Dairying , Feces , Farms
13.
Poult Sci ; 102(5): 102583, 2023 May.
Article En | MEDLINE | ID: mdl-37004250

Pasteurella multocida (P. multocida) is a zoonotic bacterium that can cause diseases in a variety of animals. It was divided into 5 serogroups, and serogroup A is mainly prevalent in avian hosts. We isolated a virulent and multidrug-resistant P. multocida strain from Guangdong duck liver and named it PMWSG-4 (GenBank accession no. CP077723.1). To understand the pathogenicity of this strain, the pathogenicity test was carried out with mice and ducks. The results showed that PMSWG-4 was highly pathogenic to ducks and mice, and the LD50 is 4.5 and 73 CFU, respectively. In order to study its genetic characteristics, pathogenicity, and relationship with the host, we performed a whole genome sequencing. The genome size of the isolated PMWSG-4 was 2.38 Mbp, with a G+C content of 40.3%, and coding 2,313 Coding DNA Sequence (CDS). The genome carries 162 potential virulence-associated genes, 32 different drug resistance phenotypes, 102 genes possibly involved in pathogen-host interaction, 2 gene island groups, and 4 prophages. In addition, we also found a new drug-resistant plasmid from strain PMWSG-4, named pXL001 (GenBank accession no. CP077724.1). After verified, the plasmid is a new plasmid carrying the floR florfenicol resistance gene. The whole genome is of great significance for further studying the pathogenesis and genetic characteristics of duck-derived P. multocida.


Pasteurella Infections , Pasteurella multocida , Animals , Mice , Pasteurella multocida/genetics , Pasteurella Infections/veterinary , Chickens/genetics , Plasmids/genetics , Genome, Bacterial , Ducks/genetics
15.
Vaccine ; 41(14): 2387-2396, 2023 03 31.
Article En | MEDLINE | ID: mdl-36872144

Pasteurella multocida (P. multocida) infection frequently results in porcine atrophic rhinitis and swine plague, leading to large economic losses for the swine industry worldwide. P. multocida toxin (PMT, 146 kDa) is a highly virulent key virulence factor that plays a vital role in causing lung and turbinate lesions. This study developed a multi-epitope recombinant antigen of PMT (rPMT) that showed excellent immunogenicity and protection in a mouse model. Using bioinformatics to analyse the dominant epitopes of PMT, we constructed and synthesized rPMT containing 10 B-cell epitopes, 8 peptides with multiple B-cell epitopes and 13 T-cell epitopes of PMT and a rpmt gene (1,974 bp) with multiple epitopes. The rPMT protein (97 kDa) was soluble and contained a GST tag protein. Immunization of mice with rPMT stimulated significantly elevated serum IgG titres and splenocyte proliferation, and serum IFN-γ and IL-12 were upregulated by 5-fold and 1.6-fold, respectively, but IL-4 was not. Furthermore, the rPMT immunization group exhibited alleviated lung tissue lesions and a significantly decreased degree of neutrophil infiltration compared with the control groups post-challenge. In the rPMT vaccination group, 57.1% (8/14) of the mice survived the challenge, similar to the bacterin HN06 group, while all the mice in the control groups succumbed to the challenge. Thus, rPMT could be a suitable candidate antigen for developing a subunit vaccine against toxigenic P. multocida infection.


Pasteurella Infections , Pasteurella multocida , Animals , Mice , Swine , Pasteurella multocida/genetics , Epitopes, B-Lymphocyte/genetics , Bacterial Proteins/genetics , Pasteurella Infections/prevention & control , Vaccination , Immunization
16.
Front Mol Biosci ; 10: 1085887, 2023.
Article En | MEDLINE | ID: mdl-36936989

Enterotoxigenic Escherichia coli (ETEC) is the primary etiologic agent of traveler's diarrhea and a major cause of diarrheal disease and death worldwide, especially in infants and young children. Despite significant efforts over the past several decades, an affordable vaccine that appreciably decreases mortality and morbidity associated with ETEC infection among children under the age of 5 years remains an unmet aspirational goal. Here, we describe robust, cost-effective biosynthetic routes that leverage glycoengineered strains of non-pathogenic E. coli or their cell-free extracts for producing conjugate vaccine candidates against two of the most prevalent O serogroups of ETEC, O148 and O78. Specifically, we demonstrate site-specific installation of O-antigen polysaccharides (O-PS) corresponding to these serogroups onto licensed carrier proteins using the oligosaccharyltransferase PglB from Campylobacter jejuni. The resulting conjugates stimulate strong O-PS-specific humoral responses in mice and elicit IgG antibodies that possess bactericidal activity against the cognate pathogens. We also show that one of the prototype conjugates decorated with serogroup O148 O-PS reduces ETEC colonization in mice, providing evidence of vaccine-induced mucosal protection. We anticipate that our bacterial cell-based and cell-free platforms will enable creation of multivalent formulations with the potential for broad ETEC serogroup protection and increased access through low-cost biomanufacturing.

18.
ACS Synth Biol ; 12(1): 95-107, 2023 01 20.
Article En | MEDLINE | ID: mdl-36548479

Cell-free protein synthesis systems that can be lyophilized for long-term, non-refrigerated storage and transportation have the potential to enable decentralized biomanufacturing. However, increased thermostability and decreased reaction cost are necessary for further technology adoption. Here, we identify maltodextrin as an additive to cell-free reactions that can act as both a lyoprotectant to increase thermostability and a low-cost energy substrate. As a model, we apply optimized formulations to produce conjugate vaccines for ∼$0.50 per dose after storage at room temperature (∼22 °C) or 37 °C for up to 4 weeks, and ∼$1.00 per dose after storage at 50 °C for up to 4 weeks, with costs based on raw materials purchased at the laboratory scale. We show that these conjugate vaccines generate bactericidal antibodies against enterotoxigenic Escherichia coli (ETEC) O78 O-polysaccharide, a pathogen responsible for diarrheal disease, in immunized mice. We anticipate that our low-cost, thermostable cell-free glycoprotein synthesis system will enable new models of medicine biosynthesis and distribution that bypass cold-chain requirements.


Escherichia coli , Mice , Animals , Vaccines, Conjugate/metabolism , Escherichia coli/metabolism , Drug Compounding
19.
Front Immunol ; 13: 985993, 2022.
Article En | MEDLINE | ID: mdl-36275745

Duck cholera (duck hemorrhagic septicemia) is a highly contagious disease caused by Pasteurella multocida, and is one of the major bacterial diseases currently affecting the duck industry. Type A is the predominant pathogenic serotype. In this study, the genes encoding the lipoproteins VacJ, PlpE, and the outer membrane protein OmpH of P. multocida strain PMWSG-4 were cloned and expressed as proteins in E. coli. The recombinant VacJ (84.4 kDa), PlpE (94.8 kDa), and OmpH (96.7 kDa) proteins were purified, and subunit vaccines were formulated with a single water-in-oil adjuvant, while killed vaccines were prepared using a single oil-coated adjuvant. Antibody responses in ducks vaccinated with recombinant VacJ, PlpE, and OmpH proteins formulated with adjuvants were significantly antigenic (p<0.005). Protectivity of the vaccines was evaluated via the intraperitoneal challenge of ducks with 20 LD50 doses of P. multocida A: 1. The vaccine formulation consisting of rVacJ, rPlpE, rOmpH, and adjuvant provided 33.3%, 83.33%, and 83.33% protection, respectively, the vaccine formulation consisting of three recombinant proteins, rVacJ, rPlpE, rOmpH and adjuvant, was 100% protective, and the killed vaccine was 50% protective. In addition, it was shown through histopathological examination and tissue bacterial load detection that all vaccines could reduce tissue damage and bacterial colonization to varying (p<0.001). These findings indicated that recombinant PlpE or OmpH fusion proteins formulated with oil adjuvants have the potential to be used as vaccine candidates against duck cholera subunits.


Cholera , Pasteurella Infections , Pasteurella multocida , Animals , Adjuvants, Immunologic/metabolism , Bacterial Outer Membrane Proteins , Bacterial Vaccines , Ducks , Escherichia coli/genetics , Lipoproteins , Pasteurella Infections/prevention & control , Pasteurella Infections/veterinary , Pasteurella multocida/genetics , Pasteurella multocida/metabolism , Recombinant Proteins , Vaccines, Inactivated , Vaccines, Subunit
20.
Int J Mol Sci ; 23(17)2022 Aug 25.
Article En | MEDLINE | ID: mdl-36077023

The YfeA gene, belonging to the well-conserved ABC (ATP-binding cassette) transport system Yfe, encodes the substrate-binding subunit of the iron, zinc, and manganese transport system in bacteria. As a potential vaccine candidate in Glaesserella parasuis, the functional mechanisms of YfeA in the infection process remain obscure. In this study, vaccination with YfeA effectively protected the C56BL6 mouse against the G. parasuis SC1401 challenge. Bioinformatics analysis suggests that YfeA is highly conserved in G. parasuis, and its metal-binding sites have been strictly conserved throughout evolution. Stimulation of RAW 264.7 macrophages with YfeA verified that toll-like receptors (TLR) 2 and 4 participated in the positive transcription and expression of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α. The activation of TLR2 and TLR4 utilized the MyD88/MAL and TRIF/TRAM pairs to initiate TLRs signaling. Furthermore, YfeA was shown to stimulate nuclear translocation of NF-κB and activated diverse mitogen-activated protein (MAP) kinase signaling cascades, which are specific to the secretion of particular cytokine(s) in murine macrophages. Separate blocking TLR2, TLR4, MAPK, and RelA (p65) pathways significantly decreased YfeA-induced pro-inflammatory cytokine production. In addition, YfeA-stimulated RAW 264.7 produces the pro-inflammatory hallmark, reactive oxygen species (ROS). In conclusion, our findings indicate that YfeA is a novel pro-inflammatory mediator in G. parasuis and induces TLR2 and TLR4-dependent pro-inflammatory activity in RAW 264.7 macrophages through P38, JNK-MAPK, and NF-κB signaling pathways.


Haemophilus parasuis , Periplasmic Binding Proteins , Animals , Cytokines/metabolism , Macrophages/metabolism , Mice , NF-kappa B/metabolism , Periplasmic Binding Proteins/metabolism , Toll-Like Receptor 2/genetics , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
...