Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 231
Filter
1.
Eur J Med Chem ; 279: 116885, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39307103

ABSTRACT

The persistent mutation of the novel coronavirus presents a continual threat of infections and associated illnesses. While considerable research efforts have concentrated on the functional proteins of SARS-CoV-2 in the development of anti-COVID-19 therapeutics, the structural proteins, particularly the N protein, have received comparatively less attention. This study focuses on the N protein, a critical structural component of the virus, and employs advanced deep learning models, including EMPIRE and DeepFrag, to optimize the structures of phenanthridine-based compounds. More than 10,000 small molecules, derived through deep learning, underwent high-throughput virtual screening, resulting in the synthesis of 44 compounds. Compound 38 showed a binding potential energy of -8.2 kcal/mol in molecular docking. Surface Plasmon Resonance (SPR) and Microscale Thermophoresis (MST) validation yielded dissociation constants of 353 nM and 726 nM, confirming strong binding to the N protein. Compound 38 demonstrated antiviral activity in vitro and exhibited anti-COVID-19 effects by interfering with the binding of N proteins to RNA. This research underscores the potential of targeting the SARS-CoV-2 N protein for therapeutic intervention and illustrates the efficacy of deep learning model in the design of lead compounds. The application of these deep learning models represents a promising approach for accelerating the discovery and development of antiviral agents.

2.
J Ethnopharmacol ; 337(Pt 1): 118787, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39244173

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cognitive dysfunction associated with diabetes, known as diabetic encephalopathy (DE), is a grave neurodegenerative condition triggered by diabetes, and persistent inflammation plays a vital role in its development. The renowned traditional Chinese medicine Huang-Lian-Jie-Du Decoction (HLJDD) is clinically proven to manage diabetes mellitus and Alzheimer's disease and is famous for its heat-clearing and detoxifying effects. However, the underlying mechanisms through which HLJDD affects DE remain to be elucidated. AIM OF THE STUDY: To explore the beneficial effects of HLJDD on improving cognitive dysfunction in DE mice. STUDY DESIGN AND METHODS: A diabetic mouse was established through a high-fat diet and subsequent administration of streptozotocin over five consecutive days. After the animals were confirmed to have diabetes, they were treated with HLJDD. After oral administration of HLJDD or metformin for 14 weeks, behavioral tests were used to assess their cognitive capacity. Biochemical analyses were then performed to detect levels of glucose metabolism, followed by histological analyses to assess pathological damage. Furthermore, AGEs/RAGE/NF-κB axis related proteins were detected by Western blot or immunofluorescence techniques. An advanced UPLC-Q-Orbitrap HRMS/MS analytical technique utilizing a chemical derivatization strategy was employed for comprehensive metabolic profiling of carbonyl compounds in the plasma of DE mice. RESULTS: Pharmacological assessment revealed that HLJDD effectively mitigated cognitive dysfunction, normalized glucose metabolic imbalances, and repaired neuronal damage in DE mice. It reduced neuroinflammation by attenuating carbonyl stress, deactivating astrocytes and microglia, and preserving dopaminergic neurons. Additionally, metabolomics analysis revealed 18 carbonyl compounds with marked disparities between DE and control mice, with 12 metabolites approaching normal levels post-HLJDD intervention. Further investigations showed that HLJDD regulated inflammation and pyroptosis through suppressing AGEs/RAGE/NF-κB pathways. CONCLUSION: Our study indicated that HLJDD could ameliorate carbonyl stress via the regulation of carbonyl compound metabolism profiling, and inhibiting the AGEs/RAGE/NF-κB pathway, thereby alleviating inflammation and pyroptosis to exert beneficial effects on DE.

3.
Taiwan J Obstet Gynecol ; 63(5): 771-776, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39266164

ABSTRACT

OBJECTIVE: To present the ultrasound imaging and genetic diagnosis of a fetus with prenatal lethal form of Gaucher disease. CASE REPORT: A 37-year-old primiparous woman was pregnant at her 23 weeks of gestation and the prenatal fetal ultrasound revealed hydrops fetalis, cerebellum hypoplasia, and fetal immobility. The pregnancy was terminated due to major fetal anomaly, and whole exome sequencing (WES) analysis of fetal tissue and parental blood unveiled a pathogenic variant in exon 10 of the GBA gene (NM_001005741.3: c.1265T > G: p.L422R) originating from the mother. Additionally, a novel CNV (chr1: 155204785-155205635 deletion, 0.85 kb) spanning exon 10-12 in the GBA gene was identified from the father. This compound heterozygosity confirmed the diagnosis of prenatal lethal form of Gaucher disease and was informative for genetic counseling. CONCLUSION: WES is a powerful tool to detect pathogenic variants among fetuses with nonimmune hydrops fetalis and complex abnormality from prenatal ultrasound. Compound heterozygosity consisted of single nucleotide variants (SNV) and copy number variations (CNVs) may lead rare inherited metabolic disorders including prenatal lethal form of Gaucher disease.


Subject(s)
Cerebellum , DNA Copy Number Variations , Exome Sequencing , Gaucher Disease , Hydrops Fetalis , Ultrasonography, Prenatal , Humans , Female , Gaucher Disease/genetics , Gaucher Disease/diagnosis , Gaucher Disease/complications , Pregnancy , Adult , Hydrops Fetalis/genetics , Hydrops Fetalis/diagnosis , Cerebellum/abnormalities , Cerebellum/diagnostic imaging , Heterozygote , Nervous System Malformations/genetics , Nervous System Malformations/diagnosis , Polymorphism, Single Nucleotide , Glucosylceramidase/genetics , Developmental Disabilities
4.
Zhongguo Zhong Yao Za Zhi ; 49(15): 4207-4219, 2024 Aug.
Article in Chinese | MEDLINE | ID: mdl-39307759

ABSTRACT

This article analyzed the mechanism of Huangqi Simiao Decoction(HSD) for the treatment of type 2 diabetes mellitus(T2DM). The component targets of HSD and the related disease targets of T2DM were screened through network pharmacology. The protein-protein interaction(PPI) network of intersecting targets and the drug-component-intersecting target network were constructed to screen the potential active ingredients and targets. Molecular docking was performed using AutoDock Vina software to verify the interaction between potential components and core targets. The serum was tested by ultra performance liquid chromatography-tandem mass spectrometry, and multivariate statistical analyses, such as principal component analysis(PCA) and partial least squares discriminant analysis(PLS-DA), were used to search for the differential metabolites and related metabolic pathways of each group by combining with the MetaboAnalyst database. The same metabolic pathways were analyzed by combining the screened differential metabolites with the intersecting targets screened by network pharmacology. Network pharmacology showed that the nine core components of HSD for the treatment of T2DM were quercetin, kaempferol, stigmasterol, baicalein, ß-sitosterol, flavodoxin, canthaxanthin, canthaxanthin, berberine, and berberine, and the five core targets included AKT1, TP53, TNF, IL6, and VEGFA. Molecular docking showed that the core components bound well to the target genes. Metabolomics showed that a total of 112 common differential metabolites were identified, of which 88 metabolites exhibited increased concentration and 24 metabolites decreased concentration after treatment with HSD. Enrichment analysis showed that HSD regulated the body metabolism of patients with T2DM, mainly related to seven metabolic pathways, such as amino acid metabolism and tricarboxylic acid cycle. The joint analysis of metabolomics and network pharmacology showed that both involved histidine metabolism, arginine and proline metabolic pathways. This study suggests that HSD has a good efficacy for T2DM. Based on the combined analysis of metabolomics and network pharmacology, it was found that the mechanism may be that the pharmacodynamic bases of quercetin, kaempferol, and stigmasterol in HSD enhance the effects on histidine metabolism, arginine and proline metabolic pathways by modulating a variety of metabolites, which provides the basis for further prevention and treatment of T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Metabolomics , Network Pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Humans , Molecular Docking Simulation
5.
World J Psychiatry ; 14(9): 1326-1334, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39319225

ABSTRACT

BACKGROUND: Evaluating the psychological resilience of lung cancer (LC) patients helps understand their mental state and guides future treatment. However, there is limited research on the psychological resilience of LC patients with bone metastases. AIM: To explore the psychological resilience of LC patients with bone metastases and identify factors that may influence psychological resilience. METHODS: LC patients with bone metastases who met the inclusion criteria were screened from those admitted to the Third Affiliated Hospital of Wenzhou Medical University. The psychological scores of the enrolled patients were collected. They were then grouped based on the mean psychological score: Those with scores lower than the mean value were placed in the low-score group and those with scores equal to or greater than the mean value was placed in the high-score group. The baseline data (age, gender, education level, marital status, residence, monthly income, and religious beliefs), along with self-efficacy and medical coping mode scores, were compared. RESULTS: This study included 142 LC patients with bone metastases admitted to our hospital from June 2022 to December 2023, with an average psychological resilience score of 63.24 ± 9.96 points. After grouping, the low-score group consisted of 69 patients, including 42 males and 27 females, with an average age of 67.38 ± 9.55 years. The high-score group consisted of 73 patients, including 49 males and 24 females, with a mean age of 61.97 ± 5.00 years. χ 2 analysis revealed significant differences between the two groups in education level (χ 2 = 6.604, P = 0.037), residence (χ 2 = 12.950, P = 0.002), monthly income (χ 2 = 9.375, P = 0.009), and medical coping modes (χ 2 = 19.150, P = 0.000). Independent sample t-test showed that the high-score group had significantly higher self-efficacy scores (t = 3.383, P = 0.001) and lower age than the low-score group (t = 4.256, P < 0.001). Furthermore, multivariate logistic regression hazard analysis confirmed that self-efficacy is an independent protective factor for psychological resilience [odds ratio (OR) = 0.926, P = 0.035, 95% confidence interval (CI): 0.862-0.995], while age (OR = 1.099, P = 0.003, 95%CI: 1.034-1.169) and medical coping modes (avoidance vs confrontation: OR = 3.767, P = 0.012, 95%CI: 1.342-10.570; resignation vs confrontation: OR = 5.687, P = 0.001, 95%CI: 1.974-16.385) were identified as independent risk factors. A predictive model based on self-efficacy, age, and medical coping modes was developed. The receiver operating characteristic analysis showed an area under the curve value of 0.778 (95%CI: 0.701-0.856, P < 0.001), indicating that the model has good predictive performance. CONCLUSION: LC patients with bone metastases are less psychologically resilient than the general population. Factors such as self-efficacy, age, and medical coping modes influence their psychological resilience. Patients with low self-efficacy, old age, and avoidance/resignation coping modes should be closely observed.

6.
Diabetes Obes Metab ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39233493

ABSTRACT

AIM: Diabetic cognitive impairment (DCI), considered one of the most severe and commonly overlooked complications of diabetes, has shown inconsistent findings regarding the metabolic profiles in DCI patients. This systematic review and meta-analysis aimed to identify dysregulated metabolites as potential biomarkers for early DCI, providing valuable insights into the underlying pathophysiological mechanisms. MATERIALS AND METHODS: A systematic search of four databases, namely PubMed, Embase, Web of Science and Cochrane, was conducted up to March 2024. Subsequently, a qualitative review of clinical studies was performed followed by a meta-analysis of metabolite markers. Finally, the sources of heterogeneity were explored through subgroup and sensitivity analyses. RESULTS: A total of 774 unique publications involving 4357 participants and the identification of multiple metabolites were retrieved. Of these, 13 clinical studies reported metabolite differences between the DCI and control groups. Meta-analysis was conducted for six brain metabolites and two metabolite ratios. The results revealed a significant increase in myo-inositol (MI) concentration and decreases in glutamate (Glu), Glx (glutamate and glutamine) and N-acetylaspartate/creatine (NAA/Cr) ratios in DCI, which have been identified as the most sensitive metabolic biomarkers for evaluating DCI progression. Notably, brain metabolic changes associated with cognitive impairment are more pronounced in type 2 diabetes mellitus than in type 1 diabetes mellitus, and the hippocampus emerged as the most sensitive brain region regarding metabolic changes associated with DCI. CONCLUSIONS: Our results suggest that MI, Glu, and Glx concentrations and NAA/Cr ratios within the hippocampus may serve as metabolic biomarkers for patients with early-stage DCI.

7.
World J Diabetes ; 15(8): 1742-1752, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39192859

ABSTRACT

BACKGROUND: Recent research has underscored the potentially protective role of dietary antioxidants against chronic conditions, such as cardiovascular diseases and stroke. The composite dietary antioxidant index (CDAI), which reflects the overall intake of key dietary antioxidants, has been identified as a crucial metric for exploring this relationship. Although previous research has shown a negative correlation between CDAI levels and stroke risk in prediabetic individuals, there remains a substantial gap in understanding this association among individuals with dia-betes, who are at an inherently greater risk for cerebrovascular events. AIM: To investigate the association between CDAI and stroke risk in individuals with diabetes. METHODS: Using a cross-sectional study design, this investigation analyzed data from the National Health and Nutrition Examination Survey spanning from 2003 to 2018 that included 6735 participants aged over 20 years with diabetes. The CDAI was calculated from 24-h dietary recalls to assess intake of key antioxidants: Vitamins A, C, and E; carotenoids; selenium; and zinc. Multivariate logistic regression and restricted cubic spline analysis were used to rigorously examine the relationship between CDAI and stroke risk. RESULTS: The participant cohort, with an average age of 59.5 years and a slight male majority, reflected the broader demographic characteristics of individuals with diabetes. The analysis revealed a strong inverse relationship between CDAI levels and stroke risk. Remarkably, those in the highest quintile of CDAI demonstrated a 43% lower prevalence of stroke compared to those in the lowest quintile, even after adjustments for various confounders. This finding not only highlights the negative association between CDAI and stroke risk but also underscores the significant potential of antioxidant-rich diets in reducing stroke prevalence among patients with diabetes. CONCLUSION: Our findings suggested that CDAI was inversely associated with stroke prevalence among patients with diabetes. These results suggest incorporating antioxidant-rich foods into dietary regimens as a potential strategy for stroke prevention.

8.
Phytomedicine ; 133: 155904, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39151265

ABSTRACT

BACKGROUND: Panax ginseng C. A. Mey is a precious medicinal resource that could be used to treat a variety of diseases. Saponins are the most important bioactive components of, and rare ginsenosides (Rg3, Rh2, Rk1 and Rg5, etc.) refer to the chemical structure changes of primary ginsenosides through dehydration and desugarization reactions, to obtain triterpenoids that are easier to be absorbed by the human body and have higher activity. PURPOSE: At present, the research of P. ginseng. is widely focused on anticancer related aspects, and there are few studies on the antibacterial and skin protection effects of rare ginsenosides. This review summarizes the rare ginsenosides related to bacterial inhibition and skin protection and provides a new direction for P. ginseng research. METHODS: PubMed and Web of Science were searched for English-language studies on P. ginseng published between January 2002 and March 2024. Selected manuscripts were evaluated manually for additional relevant references. This review includes basic scientific articles and related studies such as prospective and retrospective cohort studies. CONCLUSION: This paper summarizes the latest research progress of several rare ginsenosides, discusses the antibacterial effect of rare ginsenosides, and finds that ginsenosides can effectively protect the skin and promote wound healing during use, so as to play an efficient antibacterial effect, and further explore the other medicinal value of ginseng. It is expected that this review will provide a wider understanding and new ideas for further research and development of P. ginseng drugs.


Subject(s)
Ginsenosides , Panax , Ginsenosides/pharmacology , Ginsenosides/chemistry , Panax/chemistry , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals
9.
Int J Biol Macromol ; 277(Pt 2): 134346, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094883

ABSTRACT

To date, although the high-carbohydrate (HC) feed has been extensively adopted in the aquaculture industry, its effects on the intestinal function and development of aquatic animals still remain unclear. In addition, the corresponding nutritional intervention is still barely reported. This study aimed to evaluate the influence of xylooligosaccharides (XOS) on the intestinal health of Megalobrama amblycephala subjected to a HC feeding. Fish (average weight: 44.55 ± 0.15 g) were randomly offered 3 diets, including a control one (29 % carbohydrate), a HC one (41 % carbohydrate), and a XOS supplemented one (HC + 1.0 % XOS, HCX) respectively for 12 weeks. The HC feeding caused morphological abnormalities of intestine, an increased intestinal permeability, and the intestinal immunosuppression, all of which were markedly reversed by XOS administration. In addition, compared with the HC group, HCX feeding remarkably promoted the intestinal activities of digestive and brush border enzymes, and the expressions of cell proliferation-related proteins (Wnt10b and Cyclin D1). The 16s rDNA sequencing also revealed that XOS administration increased the abundance of beneficial bacteria, and decreased that of pathogenic ones. In conclusion, dietary supplementation of XOS improved the intestinal histomorphology, barrier function, cell proliferation and bacterial communities of carbohydrate-overloaded fish Megalobrama amblycephala.


Subject(s)
Carps , Gastrointestinal Microbiome , Glucuronates , Intestines , Oligosaccharides , Animals , Gastrointestinal Microbiome/drug effects , Oligosaccharides/pharmacology , Glucuronates/pharmacology , Carps/microbiology , Carps/growth & development , Intestines/drug effects , Intestines/pathology , Intestines/microbiology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Animal Feed , Dietary Carbohydrates/pharmacology , Dietary Carbohydrates/adverse effects , Dietary Supplements
10.
World J Diabetes ; 15(7): 1477-1488, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39099806

ABSTRACT

BACKGROUND: The glycemic control of children with type 1 diabetes (T1D) may be influenced by the economic status of their parents. AIM: To investigate the association between parental economic status and blood glucose levels of children with T1D using a mobile health application. METHODS: Data from children with T1D in China's largest T1D online community, Tang-TangQuan®. Blood glucose levels were uploaded every three months and parental economic status was evaluated based on annual household income. Children were divided into three groups: Low-income (< 30000 Yuan), middle-income (30000-100000 Yuan), and high-income (> 100000 yuan) (1 Yuan = 0.145 United States Dollar approximately). Blood glucose levels were compared among the groups and associations were explored using Spearman's correlation analysis and multivariable logistic regression. RESULTS: From September 2015 to August 2022, 1406 eligible children with T1D were included (779 female, 55.4%). Median age was 8.1 years (Q1-Q3: 4.6-11.6) and duration of T1D was 0.06 years (0.02-0.44). Participants were divided into three groups: Low-income (n = 320), middle-income (n = 724), and high-income (n = 362). Baseline hemoglobin A1c (HbA1c) levels were comparable among the three groups (P = 0.072). However, at month 36, the low-income group had the highest HbA1c levels (P = 0.036). Within three years after registration, glucose levels increased significantly in the low-income group but not in the middle-income and high-income groups. Parental economic status was negatively correlated with pre-dinner glucose (r = -0.272, P = 0.012). After adjustment for confounders, parental economic status remained a significant factor related to pre-dinner glucose levels (odds ratio = 13.02, 95%CI: 1.99 to 126.05, P = 0.002). CONCLUSION: The blood glucose levels of children with T1D were negatively associated with parental economic status. It is suggested that parental economic status should be taken into consideration in the management of T1D for children.

11.
Article in English | MEDLINE | ID: mdl-39127314

ABSTRACT

Mitochondrial function can be regulated by ion channels. Mitochondrial RNA splicing 2 (Mrs2) is a magnesium ion (Mg2+) channel located in the inner mitochondrial membrane, thereby mediating the Mg2+ influx into the mitochondrial matrix. However, its potential role in regulating the Mg homeostasis and mitochondrial function in aquatic species is still unclear. This study molecularly characterizes the gene encoding Mrs2 in fish M. amblycephala with its functions in maintaining the Mg homeostasis and mitochondrial function verified. The mrs2 gene is 2133 bp long incorporating a 1269 bp open reading frame, which encodes 422 amino acids. The Mrs2 protein includes two transmembrane domains and a conserved tripeptide Gly-Met-Asn, and has a high homology (65.92-97.64%) with those of most vertebrates. The transcript of mrs2 was relatively high in the white muscle, liver and kidney. The inhibition of mrs2 reduces the expressions of Mg2+ influx/efflux-related proteins, mitochondrial Mg content, and the activities of mitochondrial complex I and V in hepatocytes. However, the over-expression of mrs2 increases the expressions of Mg2+ influx/efflux-related proteins, mitochondrial Mg content, and the complex V activity, but decreases the activities of mitochondrial complex III and IV and citrate synthase in hepatocytes. Collectively, Mrs2 is highly conserved among different species, and is prerequisite for maintaining Mg homeostasis and mitochondrial function in fish.


Subject(s)
Amino Acid Sequence , Cloning, Molecular , Homeostasis , Magnesium , Mitochondria , Animals , Magnesium/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Fish Proteins/genetics , Fish Proteins/metabolism , Cyprinidae/genetics , Cyprinidae/metabolism , Phylogeny , Base Sequence , RNA Splicing
12.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3473-3483, 2024 Jul.
Article in Chinese | MEDLINE | ID: mdl-39041119

ABSTRACT

Panax ginseng is a perennial herb with the main active compounds of ginsenosides. Among the reported ginsenosides, ginsenoside Rg_1 not only has a wide range of medicinal functions and abundant content but also is one of the major ginsenoside for the quality evaluation of this herb in the Chinese Pharmacopoeia. The main biosynthesis pathway of ginsenoside Rg_1 in P. ginseng has been clarified, which lays a foundation for the comprehensive and in-depth analysis of the biosynthesis and regulatory mechanism of ginseno-side Rg_1. However, the biosynthesis of ginsenoside Rg_1 is associated with other complex processes involving a variety of regulatory genes and catalyzing enzyme genes, which remain to be studied comprehensively. With the transcriptome data of 344 root samples from 4-year-old P. ginseng plants and their corresponding ginsenoside Rg_1 content obtained in the previous study, this study screened out 217 differentially expressed genes(DEGs) with Rg_1 content changes by DEseq2 analysis in R language. Furthermore, the weighted gene co-expression network analysis(WGCNA) revealed 40 hub genes among the DEGs.Pearsoncorrelation analysis was further perforned to yield 20 candidate genes significantly correlated with ginsenoside Rg_1 content, and these genes were annotated to multiple metabolic processes including primary metabolism and secondary metabolism. Finally, the treatment of P. ginseng adventitious roots with methyl jasmonate indicated that 16 of these genes promoted the biosynthesis of ginsenoside Rg_1 in response to methyl jasmonate induction. Finally, one of the 16 genes was randomly selected to verify the function of the gene by genetic transformation and qRT-PCR and to confirm the rationality of the methodology of this study. The above results lay a foundation for studying the mechanism for regulation on the synthesis of ginsenoside Rg_1 and provide genetic resources for the industrial production of ginsenoside Rg_1.


Subject(s)
Gene Expression Regulation, Plant , Ginsenosides , Panax , Ginsenosides/biosynthesis , Panax/genetics , Panax/metabolism , Panax/chemistry , Gene Expression Regulation, Plant/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling
13.
Cancer Invest ; 42(6): 527-537, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965994

ABSTRACT

Despite the emergence of various treatment strategies for rectal cancer based on neoadjuvant chemoradiotherapy, there is currently a lack of reliable biomarkers to determine which patients will respond well to neoadjuvant chemoradiotherapy. Through collecting hematological and biochemical parameters data of patients prior to receiving neoadjuvant chemoradiotherapy, we evaluated the predictive value of systemic inflammatory indices for pathological response and prognosis in rectal cancer patients. We found that baseline GRIm-Score was an independent predictor for MPR in rectal cancer patients. However, no association was observed between several commonly systemic inflammation indices and long-term outcome.


Subject(s)
Neoadjuvant Therapy , Rectal Neoplasms , Humans , Rectal Neoplasms/pathology , Rectal Neoplasms/therapy , Rectal Neoplasms/immunology , Male , Female , Middle Aged , Neoadjuvant Therapy/methods , Aged , Chemoembolization, Therapeutic/methods , Prognosis , Treatment Outcome , Adult , Chemoradiotherapy/methods
14.
J Oral Pathol Med ; 53(7): 480-490, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38866540

ABSTRACT

BACKGROUND: Oral lichen planus (OLP) is a common T cell-mediated oral mucosal immune inflammatory disease. Intraepithelial lymphocytes (IELs) are a unique subset of T cells that play an important role in regulating immune response. This study aims to investigate the phenotype and the differentiation mechanism of IELs in OLP. METHODS: The expression of CD4, CD8α, CD8ß, T-helper-inducing POZ/Krueppel-like factor (ThPOK), and RUNX family transcription factor 3 (Runx3) in the epithelium and peripheral blood mononuclear cells (PBMCs) of OLP was determined by immunofluorescence and immunohistochemistry. Then, the correlations among them were analyzed. Naïve CD4+ T cells were sorted from blood of OLP patients and stimulated with retinoic acid (RA) and transforming growth factor-ß1 (TGF-ß1). Then the expression of CD4, CD8α, CD8ß, ThPOK, and Runx3 was investigated by immunocytochemistry. RESULTS: CD8α expression and CD8αα+ cells were upregulated in the epithelium of OLP, whereas they were downregulated in PBMCs of OLP. CD8ß was not expressed in the epithelium of OLP. CD4, CD8α, and Runx3 expression and CD4+CD8α+ cells were increased, whereas ThPOK expression was decreased in the epithelium of OLP. CD8α expression was positively correlated with Runx3 expression, whereas ThPOK expression was negatively correlated with Runx3 expression. After RA and TGF-ß1 stimulation, CD8α and Runx3 expression was upregulated, and ThPOK expression was downregulated in naïve CD4+ T cells. CONCLUSION: CD4+CD8αα+ IELs may be the dominant phenotype of IELs in OLP, and the differentiation of CD4+CD8αα+ IELs in OLP is negatively regulated by ThPOK and positively regulated by Runx3.


Subject(s)
CD8 Antigens , Core Binding Factor Alpha 3 Subunit , Intraepithelial Lymphocytes , Lichen Planus, Oral , Phenotype , Humans , Core Binding Factor Alpha 3 Subunit/metabolism , Lichen Planus, Oral/metabolism , Lichen Planus, Oral/immunology , Lichen Planus, Oral/pathology , Female , Middle Aged , Male , Adult , Intraepithelial Lymphocytes/immunology , CD4 Antigens , Transcription Factors , Aged , CD4-Positive T-Lymphocytes , Mouth Mucosa/metabolism , Mouth Mucosa/immunology , Mouth Mucosa/pathology , Cell Differentiation , DNA-Binding Proteins
15.
Ecotoxicol Environ Saf ; 279: 116453, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38772139

ABSTRACT

Chlorinated polyfluorinated ether sulfonate, commercially known as F-53B, has been associated with adverse birth outcomes. However, the reproductive toxicology of F-53B on the placenta remains poorly understood. To address this gap, we examined the impact of F-53B on placental injury and its underlying molecular mechanisms in vivo. Pregnant C57BL/6 J female mice were randomly allocated to three groups: the control group, F-53B 0.8 µg/kg/day group, and F-53B 8 µg/kg/day group. After F-53B exposure through free drinking water from gestational day (GD) 0.5-14.5, the F-53B 8 µg/kg/day group exhibited significant increases in placental weights and distinctive histopathological alterations, including inflammatory cell infiltration, heightened syncytiotrophoblast knots, and a loosened trophoblastic basement membrane. Within the F-53B 8 µg/kg/day group, placental tissue exhibited increased apoptosis, as indicated by increased caspase3 activation. Furthermore, F-53B potentially induced the NF-κB signaling pathway activation through IκB-α phosphorylation. Subsequently, this activation upregulated the expression of inflammatory cytokines and components of the NLRP3 inflammasome, including activated caspase1, IL-1ß, IL-18, and cleaved gasdermin D (GSDMD), ultimately leading to pyroptosis in the mouse placenta. Our findings reveal a pronounced inflammatory injury in the placenta due to F-53B exposure, suggesting potential reproductive toxicity at concentrations relevant to the human population. Further toxicological and epidemiological investigations are warranted to conclusively assess the reproductive health risks posed by F-53B.


Subject(s)
Inflammasomes , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Placenta , Animals , Female , Pregnancy , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Placenta/drug effects , Placenta/pathology , Mice , Inflammasomes/drug effects , Inflammation/chemically induced , Inflammation/pathology , Apoptosis/drug effects , NF-kappa B/metabolism , Fluorocarbons/toxicity , Signal Transduction/drug effects
16.
Zool Res ; 45(3): 601-616, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38766744

ABSTRACT

Meiosis is a highly complex process significantly influenced by transcriptional regulation. However, studies on the mechanisms that govern transcriptomic changes during meiosis, especially in prophase I, are limited. Here, we performed single-cell ATAC-seq of human testis tissues and observed reprogramming during the transition from zygotene to pachytene spermatocytes. This event, conserved in mice, involved the deactivation of genes associated with meiosis after reprogramming and the activation of those related to spermatogenesis before their functional onset. Furthermore, we identified 282 transcriptional regulators (TRs) that underwent activation or deactivation subsequent to this process. Evidence suggested that physical contact signals from Sertoli cells may regulate these TRs in spermatocytes, while secreted ENHO signals may alter metabolic patterns in these cells. Our results further indicated that defective transcriptional reprogramming may be associated with non-obstructive azoospermia (NOA). This study revealed the importance of both physical contact and secreted signals between Sertoli cells and germ cells in meiotic progression.


Subject(s)
Cell Communication , Meiosis , Animals , Male , Mice , Meiosis/physiology , Humans , Sertoli Cells/metabolism , Sertoli Cells/physiology , Testis/metabolism , Testis/cytology , Spermatogenesis/physiology , Gene Expression Regulation , Azoospermia/genetics , Transcription, Genetic , RNA, Small Cytoplasmic/genetics , RNA, Small Cytoplasmic/metabolism , Single-Cell Gene Expression Analysis
17.
Angew Chem Int Ed Engl ; 63(32): e202406557, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38798154

ABSTRACT

The surge in lithium-ion batteries has heightened concerns regarding metal resource depletion and the environmental impact of spent batteries. Battery recycling has become paramount globally, but conventional techniques, while effective at extracting transition metals like cobalt and nickel from cathodes, often overlook widely used spent LiFePO4 due to its abundant and low-cost iron content. Direct regeneration, a promising approach for restoring deteriorated cathodes, is hindered by practicality and cost issues despite successful methods like solid-state sintering. Hence, a smart prelithiation separator based on surface-engineered sacrificial lithium agents is proposed. Benefiting from the synergistic anionic and cationic redox, the prelithiation separator can intelligently release or intake active lithium via voltage regulation. The staged lithium replenishment strategy was implemented, successfully restoring spent LiFePO4's capacity to 163.7 mAh g-1 and a doubled life. Simultaneously, the separator can absorb excess active lithium up to approximately 600 mAh g-1 below 2.5 V to prevent over-lithiation of the cathode This innovative, straightforward, and cost-effective strategy paves the way for the direct regeneration of spent batteries, expanding the possibilities in the realm of lithium-ion battery recycling.

18.
Sci Rep ; 14(1): 9083, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643294

ABSTRACT

Simulated moving bed (SMB) technology is considered one of the most successful techniques in chromatographic separation. However, due to the nonlinearity caused by discrete events and sensitivity to numerous separation performance parameters, purity control in SMB systems has been a challenging issue. Fuzzy controllers are increasingly popular in industrial environments due to their simplicity and effectiveness in handling nonlinearity. However, traditional fuzzy controllers used in industry often overlook considerations of error acceleration, resulting in slight deviations from target values under steady-state conditions and oscillatory behavior when system parameters change. This study proposes an advanced fuzzy controller, where in a series of experiments, the purity control targets for component B are set at 94% and 96%, and for component A are set at 96% and 96%, respectively. Experimental results indicate that the advanced fuzzy controller achieves higher precision, with an average deviation of around 0.1%, for both components B and A. Importantly, under variations in adsorbent parameter(from 0.01 to 0.03), feed concentration(from 4.5 to 5.2), and switching time(from 178 to 182), the experimental results demonstrate smoother control with the advanced controller, particularly when oscillations occur with conventional fuzzy controllers due to switching time variations, indicating robust control with the advanced fuzzy controller.

19.
Chem Biodivers ; 21(5): e202400283, 2024 May.
Article in English | MEDLINE | ID: mdl-38485665

ABSTRACT

Fifteen bibenyls and four fluorenones, including five new bibenzyl-phenylpropane hybrids, were isolated from the aerial part of Dendrobium nobile Lindl. Their structures were determined by spectroscopic methods. Bioassay on the LPS-induced proliferations of mouse splenic B lymphocytes, and Con A-induced T lymphocytes showed that compounds 1, 2, and 14 showed excellent immunosuppressive activities with IC50 values of 1.23, 1.01, and 3.87 µM, respectively, while compounds 3-4, 7, 10, 13, and 15 exhibited moderate immunosuppressive activities with IC50 values ranging from 6.89 to 14.2 µM.


Subject(s)
Bibenzyls , Cell Proliferation , Dendrobium , Immunosuppressive Agents , Dendrobium/chemistry , Animals , Mice , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/isolation & purification , Bibenzyls/chemistry , Bibenzyls/pharmacology , Bibenzyls/isolation & purification , Cell Proliferation/drug effects , T-Lymphocytes/drug effects , B-Lymphocytes/drug effects , Molecular Structure , Structure-Activity Relationship , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Dose-Response Relationship, Drug , Concanavalin A/antagonists & inhibitors , Concanavalin A/pharmacology
20.
Am J Cancer Res ; 14(2): 490-506, 2024.
Article in English | MEDLINE | ID: mdl-38455417

ABSTRACT

Prostate cancer (PCa), especially castration-resistant PCa, is a common and fatal disease. Anillin (ANLN) is an actin-binding protein that is involved in various malignancies, including PCa. However, the regulatory mechanism of ANLN in PCa remains unclear. Exploring the role of ANLN in PCa development and discovering novel therapeutic targets are crucial for PCa therapy. In the current work, we discovered that ANLN expression was considerably elevated in PCa tissues and cell lines when compared to nearby noncancerous prostate tissues and normal prostate epithelial cells. ANLN was associated with more advanced T stage, N stage, higher Gleason score, and prostate-specific antigen (PSA) level. In addition, we discovered that overexpression of ANLN promoted PCa cell proliferation, migration, and invasion in vitro and in vivo. Mechanistically, we performed RNA-seq to identify the regulatory influence of ANLN on the MAPK signal pathway. Furthermore, a favorable association between ANLN expression and IGF2BP1 expression was identified. The tumor-suppressive impact of ANLN downregulation on PCa cell growth was partially reversed by overexpressing IGF2BP1. Meanwhile, we discovered that ANLN can stabilize the proto-oncogene c-Myc and activate the MAPK signaling pathway through IGF2BP1. These findings indicate that ANLN could be a potential therapeutic target in PCa.

SELECTION OF CITATIONS
SEARCH DETAIL