Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Open Forum Infect Dis ; 8(6): ofab195, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34095338

ABSTRACT

BACKGROUND: Sustained molecular detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in the upper respiratory tract (URT) in mild to moderate coronavirus disease 2019 (COVID-19) is common. We sought to identify host and immune determinants of prolonged SARS-CoV-2 RNA detection. METHODS: Ninety-five symptomatic outpatients self-collected midturbinate nasal, oropharyngeal (OP), and gingival crevicular fluid (oral fluid) samples at home and in a research clinic a median of 6 times over 1-3 months. Samples were tested for viral RNA, virus culture, and SARS-CoV-2 and other human coronavirus antibodies, and associations were estimated using Cox proportional hazards models. RESULTS: Viral RNA clearance, as measured by SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR), in 507 URT samples occurred a median (interquartile range) 33.5 (17-63.5) days post-symptom onset. Sixteen nasal-OP samples collected 2-11 days post-symptom onset were virus culture positive out of 183 RT-PCR-positive samples tested. All participants but 1 with positive virus culture were negative for concomitant oral fluid anti-SARS-CoV-2 antibodies. The mean time to first antibody detection in oral fluid was 8-13 days post-symptom onset. A longer time to first detection of oral fluid anti-SARS-CoV-2 S antibodies (adjusted hazard ratio [aHR], 0.96; 95% CI, 0.92-0.99; P = .020) and body mass index (BMI) ≥25 kg/m2 (aHR, 0.37; 95% CI, 0.18-0.78; P = .009) were independently associated with a longer time to SARS-CoV-2 viral RNA clearance. Fever as 1 of first 3 COVID-19 symptoms correlated with shorter time to viral RNA clearance (aHR, 2.06; 95% CI, 1.02-4.18; P = .044). CONCLUSIONS: We demonstrate that delayed rise of oral fluid SARS-CoV-2-specific antibodies, elevated BMI, and absence of early fever are independently associated with delayed URT viral RNA clearance.

2.
medRxiv ; 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33688688

ABSTRACT

BACKGROUND: Sustained molecular detection of SARS-CoV-2 RNA in the upper respiratory tract (URT) in mild to moderate COVID-19 is common. We sought to identify host and immune determinants of prolonged SARS-CoV-2 RNA detection. METHODS: Ninety-five outpatients self-collected mid-turbinate nasal, oropharyngeal (OP), and gingival crevicular fluid (oral fluid) samples at home and in a research clinic a median of 6 times over 1-3 months. Samples were tested for viral RNA, virus culture, and SARS-CoV-2 and other human coronavirus antibodies, and associations were estimated using Cox proportional hazards models. RESULTS: Viral RNA clearance, as measured by SARS-CoV-2 RT-PCR, in 507 URT samples occurred a median (IQR) 33.5 (17-63.5) days post-symptom onset. Sixteen nasal-OP samples collected 2-11 days post-symptom onset were virus culture positive out of 183 RT-PCR positive samples tested. All participants but one with positive virus culture were negative for concomitant oral fluid anti-SARS-CoV-2 antibodies. The mean time to first antibody detection in oral fluid was 8-13 days post-symptom onset. A longer time to first detection of oral fluid anti-SARS-CoV-2 S antibodies (aHR 0.96, 95% CI 0.92-0.99, p=0.020) and BMI ≥ 25kg/m 2 (aHR 0.37, 95% CI 0.18-0.78, p=0.009) were independently associated with a longer time to SARS-CoV-2 viral RNA clearance. Fever as one of first three COVID-19 symptoms correlated with shorter time to viral RNA clearance (aHR 2.06, 95% CI 1.02-4.18, p=0.044). CONCLUSIONS: We demonstrate that delayed rise of oral fluid SARS-CoV-2-specific antibodies, elevated BMI, and absence of early fever are independently associated with delayed URT viral RNA clearance.

3.
Microbiome ; 8(1): 58, 2020 04 22.
Article in English | MEDLINE | ID: mdl-32321582

ABSTRACT

BACKGROUND: The skin micro-environment varies across the body, but all sites are host to microorganisms that can impact skin health. Some of these organisms are true commensals which colonize a unique niche on the skin, while open exposure of the skin to the environment also results in the transient presence of diverse microbes with unknown influences on skin health. Culture-based studies of skin microbiota suggest that skin microbes can affect skin properties, immune responses, pathogen growth, and wound healing. RESULTS: In this work, we greatly expanded the diversity of available commensal organisms by collecting > 800 organisms from 3 body sites of 17 individuals. Our collection includes > 30 bacterial genera and 14 fungal genera, with Staphylococcus and Micrococcus as the most prevalent isolates. We characterized a subset of skin isolates for the utilization of carbon compounds found on the skin surface. We observed that members of the skin microbiota have the capacity to metabolize amino acids, steroids, lipids, and sugars, as well as compounds originating from personal care products. CONCLUSIONS: This collection is a resource that will support skin microbiome research with the potential for discovery of novel small molecules, development of novel therapeutics, and insight into the metabolic activities of the skin microbiota. We believe this unique resource will inform skin microbiome management to benefit skin health. Video abstract.


Subject(s)
Bacteria , Fungi , Microbiota , Skin/microbiology , Adolescent , Adult , Bacteria/classification , Bacteria/isolation & purification , Fungi/classification , Fungi/isolation & purification , Healthy Volunteers , Humans , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...