Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
PLoS Biol ; 22(8): e3002762, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39173068

ABSTRACT

During embryonic development, tissues and organs are gradually shaped into their functional morphologies through a series of spatiotemporally tightly orchestrated cell behaviors. A highly conserved organ shape across metazoans is the epithelial tube. Tube morphogenesis is a complex multistep process of carefully choreographed cell behaviors such as convergent extension, cell elongation, and lumen formation. The identity of the signaling molecules that coordinate these intricate morphogenetic steps remains elusive. The notochord is an essential tubular organ present in the embryonic midline region of all members of the chordate phylum. Here, using genome editing, pharmacology and quantitative imaging in the early chordate Ciona intestinalis we show that Ano10/Tmem16k, a member of the evolutionarily ancient family of transmembrane proteins called Anoctamin/TMEM16 is essential for convergent extension, lumen expansion, and connection during notochord morphogenesis. We find that Ano10/Tmem16k works in concert with the plasma membrane (PM) localized Na+/Ca2+ exchanger (NCX) and the endoplasmic reticulum (ER) residing SERCA, RyR, and IP3R proteins to establish developmental stage specific Ca2+ signaling molecular modules that regulate notochord morphogenesis and Ca2+ dynamics. In addition, we find that the highly conserved Ca2+ sensors calmodulin (CaM) and Ca2+/calmodulin-dependent protein kinase (CaMK) show an Ano10/Tmem16k-dependent subcellular localization. Their pharmacological inhibition leads to convergent extension, tubulogenesis defects, and deranged Ca2+ dynamics, suggesting that Ano10/Tmem16k is involved in both the "encoding" and "decoding" of developmental Ca2+ signals. Furthermore, Ano10/Tmem16k mediates cytoskeletal reorganization during notochord morphogenesis, likely by altering the localization of 2 important cytoskeletal regulators, the small GTPase Ras homolog family member A (RhoA) and the actin binding protein Cofilin. Finally, we use electrophysiological recordings and a scramblase assay in tissue culture to demonstrate that Ano10/Tmem16k likely acts as an ion channel but not as a phospholipid scramblase. Our results establish Ano10/Tmem16k as a novel player in the prevertebrate molecular toolkit that controls organ morphogenesis across scales.


Subject(s)
Anoctamins , Ciona intestinalis , Morphogenesis , Notochord , Animals , Notochord/metabolism , Notochord/embryology , Anoctamins/metabolism , Anoctamins/genetics , Ciona intestinalis/metabolism , Ciona intestinalis/embryology , Ciona intestinalis/genetics , Morphogenesis/genetics , Calcium Signaling , Gene Expression Regulation, Developmental , Endoplasmic Reticulum/metabolism , Calcium/metabolism
2.
Dev Biol ; 516: 207-220, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39181419

ABSTRACT

Larvacean tunicates feature a spectacular innovation not seen in other animals - the trunk oikoplastic epithelium (OE). This epithelium produces a house, a large and complex extracellular structure used for filtering and concentrating food particles. Previously we identified several homeobox transcription factor genes expressed during early OE patterning. Among these are two Pax3/7 copies that we named pax37A and pax37B. The vertebrate homologs, PAX3 and PAX7 are involved in developmental processes related to neural crest and muscles. In the ascidian tunicate Ciona intestinalis, Pax3/7 plays a role in the development of cells deriving from the neural plate border, including trunk epidermal sensory neurons and tail nerve cord neurons, as well as in the neural tube closure. Here we have investigated the roles of Oikopleura dioica pax37A and pax37B in the development of the OE, by using CRISPR-Cas9 mutant lines and analyzing scRNA-seq data from wild-type animals. We found that pax37B but not pax37A is essential for the differentiation of cell fields that produce the food concentrating filter of the house: the anterior Fol, giant Fol and Nasse cells. Trajectory analysis supported a neuroepithelial-like or a preplacodal ectoderm transcriptional signature in these cells. We propose that the highly specialized secretory epithelial cells of the Fol region either maintained or evolved neuroepithelial features. This is supported by a fragmented gene regulatory network involved in their development that also operates in ascidian epidermal neurons.


Subject(s)
PAX3 Transcription Factor , PAX7 Transcription Factor , Urochordata , Animals , Urochordata/embryology , Urochordata/genetics , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , PAX3 Transcription Factor/genetics , PAX3 Transcription Factor/metabolism , Gene Expression Regulation, Developmental/genetics , Epithelium/metabolism , Ciona intestinalis/genetics , Ciona intestinalis/embryology , Cell Differentiation/genetics , Neural Crest/metabolism , Neural Crest/embryology
3.
Aquat Toxicol ; 273: 107026, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39059104

ABSTRACT

The widely reported increase of terrestrial dissolved organic matter (terrDOM) in northern latitude coastal areas ("coastal darkening") can impact contaminant dynamics in affected systems. One potential impact is based on differences in chemical adsorption processes of the molecularly larger terrDOM compared to marine DOM (marDOM) that leads to increased emulsification of lipophilic contaminants with terrDOM. Filter feeders filter large amounts of water and DOM daily and thus are directly exposed to associated contaminants through both respiration and feeding activity. Thus, increased exposure to terrDOM could potentially lead to an increase in bioaccumulation of lipid soluble contaminants in filter feeders. To assess the effect of DOM on bioaccumulation in filter feeders, we exposed the mucous based filter feeding ascidian Ciona intestinalis (formerly known as Ciona intestinalis Type B), to the lipophilic veterinary drug teflubenzuron (log KOW: 5.39) in combination with four DOM treatments: TerrDOM, marDOM, a mix of the two called mixDOM, and seawater without DOM addition. The exposure lasted for 15 days, after which the individuals in all DOM treatments showed a trend towards higher bioaccumulation of Teflubenzuron than those in the seawater control. However, there was considerable overlap in posterior distributions. Against our expectations, marDOM resulted in the highest bioaccumulation factor (BAF), followed by mixDOM, with terrDOM resulting in the lowest BAF except for seawater (kinetic BAF L/kg median, 2.5 %-97.5 % percentile marDOM 94, 74-118; mixDOM 82, 63-104; terrDOM 79; 61-99; seawater 61, 44-79). All BAFs were below the level of concern according to the EU REACH regulation (BAF < 2000 L / kg) and, therefore, likely not environmentally problematic in the examined context. However, the results show that DOM can act as a dietary vector; thus, different combinations of contaminants, DOM, and filter feeding organisms should be tested further.


Subject(s)
Ciona intestinalis , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/metabolism , Ciona intestinalis/metabolism , Particle Size , Seawater/chemistry , Bioaccumulation , Lipids/chemistry , Benzamides/chemistry
4.
Curr Biol ; 34(6): 1168-1182.e7, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38335959

ABSTRACT

The Earth's oceans brim with an incredible diversity of microscopic lifeforms, including motile planktonic larvae, whose survival critically depends on effective dispersal in the water column and subsequent exploration of the seafloor to identify a suitable settlement site. How their nervous systems mediate sensing of diverse multimodal cues remains enigmatic. Here, we uncover that the tunicate Ciona intestinalis larvae employ ectodermal sensory cells to sense various mechanical and chemical cues. Combining whole-brain imaging and chemogenetics, we demonstrate that stimuli encoded at the periphery are sufficient to drive global brain-state changes to promote or impede both larval attachment and metamorphosis behaviors. The ability of C. intestinalis larvae to leverage polymodal sensory perception to support information coding and chemotactile behaviors may explain how marine larvae make complex decisions despite streamlined nervous systems.


Subject(s)
Ciona intestinalis , Ciona , Animals , Larva , Metamorphosis, Biological/physiology , Perception
5.
Commun Biol ; 6(1): 1279, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110640

ABSTRACT

Trematodes, or flukes, undergo intricate anatomical and behavioral transformations during their life cycle, yet the functional changes in their nervous system remain poorly understood. We investigated the molecular basis of nervous system function in Cryptocotyle lingua, a species of relevance for fisheries. Transcriptomic analysis revealed a streamlined molecular toolkit with the absence of key signaling pathways and ion channels. Notably, we observed the loss of nitric oxide synthase across the Platyhelminthes. Furthermore, we identified upregulated neuronal genes in dispersal larvae, including those involved in aminergic pathways, synaptic vesicle trafficking, TRPA channels, and surprisingly nitric oxide receptors. Using neuronal markers and in situ hybridization, we hypothesized their functional relevance to larval adaptations and host-finding strategies. Additionally, employing a behavior quantification toolkit, we assessed cercaria motility, facilitating further investigations into the behavior and physiology of parasitic flatworms. This study enhances our understanding of trematode neurobiology and provides insights for targeted antiparasitic strategies.


Subject(s)
Trematoda , Animals , Trematoda/genetics , Larva , Signal Transduction , Life Cycle Stages , Gene Expression
6.
Mar Environ Res ; 191: 106170, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37708617

ABSTRACT

In context of testing, screening and monitoring of endocrine-disrupting (ED) type of environmental pollutants, tunicates could possibly represent a particularly interesting group of bioindicator organisms. These primitive chordates are already important model organisms within developmental and genomics research due to their central position in evolution and close relationship to vertebrates. The solitary ascidians, such as the genus Ciona spp. (vase tunicates), could possibly be extra feasible as ED bioindicators. They have a free-swimming, tadpole-like larval stage that develops extremely quickly (<20 h under favorable conditions), has a short life cycle (typically 2-3 months), are relatively easy to maintain in laboratory culture, have fully sequenced genomes, and transgenic embryos with 3D course data of the embryo ontogeny are available. In this article, we discuss possible roles of Ciona spp. (and other solitary ascidians) as ecotoxicological bioindicator organisms in general but perhaps especially for effect studies of contaminants with presumed endocrine disrupting modes of action.


Subject(s)
Ciona intestinalis , Ciona , Endocrine Disruptors , Animals , Environmental Biomarkers , Endocrine Disruptors/toxicity
7.
PLoS Biol ; 20(8): e3001744, 2022 08.
Article in English | MEDLINE | ID: mdl-35925898

ABSTRACT

Vertebrate nervous systems can generate a remarkable diversity of behaviors. However, our understanding of how behaviors may have evolved in the chordate lineage is limited by the lack of neuroethological studies leveraging our closest invertebrate relatives. Here, we combine high-throughput video acquisition with pharmacological perturbations of bioamine signaling to systematically reveal the global structure of the motor behavioral repertoire in the Ciona intestinalis larvae. Most of Ciona's postural variance can be captured by 6 basic shapes, which we term "eigencionas." Motif analysis of postural time series revealed numerous stereotyped behavioral maneuvers including "startle-like" and "beat-and-glide." Employing computational modeling of swimming dynamics and spatiotemporal embedding of postural features revealed that behavioral differences are generated at the levels of motor modules and the transitions between, which may in part be modulated by bioamines. Finally, we show that flexible motor module usage gives rise to diverse behaviors in response to different light stimuli.


Subject(s)
Ciona intestinalis , Animals , Invertebrates , Neurotransmitter Agents , Swimming/physiology , Vertebrates
8.
Nat Commun ; 12(1): 6569, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34772921

ABSTRACT

Calcium imaging is an increasingly valuable technique for understanding neural circuits, neuroethology, and cellular mechanisms. The analysis of calcium imaging data presents challenges in image processing, data organization, analysis, and accessibility. Tools have been created to address these problems independently, however a comprehensive user-friendly package does not exist. Here we present Mesmerize, an efficient, expandable and user-friendly analysis platform, which uses a Findable, Accessible, Interoperable and Reproducible (FAIR) system to encapsulate the entire analysis process, from raw data to interactive visualizations for publication. Mesmerize provides a user-friendly graphical interface to state-of-the-art analysis methods for signal extraction & downstream analysis. We demonstrate the broad scientific scope of Mesmerize's applications by analyzing neuronal datasets from mouse and a volumetric zebrafish dataset. We also applied contemporary time-series analysis techniques to analyze a novel dataset comprising neuronal, epidermal, and migratory mesenchymal cells of the protochordate Ciona intestinalis.


Subject(s)
Calcium , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Animals , Computational Biology/methods , Data Curation , Electronic Data Processing , Mice , Software , User-Computer Interface , Zebrafish
9.
Curr Biol ; 31(23): 5274-5285.e6, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34587474

ABSTRACT

Ctenophores are gelatinous marine animals famous for locomotion by ciliary combs. Due to the uncertainties of the phylogenetic placement of ctenophores and the absence of some key bilaterian neuronal genes, it has been hypothesized that their neurons evolved independently. Additionally, recent whole-body, single-cell RNA sequencing (scRNA-seq) analysis failed to identify ctenophore neurons using any of the known neuronal molecular markers. To reveal the molecular machinery of ctenophore neurons, we have characterized the neuropeptide repertoire of the ctenophore Mnemiopsis leidyi. Using the machine learning NeuroPID tool, we predicted 129 new putative neuropeptide precursors. Sixteen of them were localized to the subepithelial nerve net (SNN), sensory aboral organ (AO), and epithelial sensory cells (ESCs), providing evidence that they are neuropeptide precursors. Four of these putative neuropeptides had a behavioral effect and increased the animals' swimming speed. Intriguingly, these putative neuropeptides finally allowed us to identify neuronal cell types in single-cell transcriptomic data and reveal the molecular identity of ctenophore neurons. High-resolution electron microscopy and 3D reconstructions of the nerve net underlying the comb plates confirmed a more than 100-year-old hypothesis of anastomoses between neurites of the same cell in ctenophores and revealed that they occur through a continuous membrane. Our work demonstrates the unique ultrastructure of the peptidergic nerve net and a rich neuropeptide repertoire of ctenophores, supporting the hypothesis that the first nervous system(s) evolved as nets of peptidergic cells.


Subject(s)
Ctenophora , Neuropeptides , Animals , Ctenophora/anatomy & histology , Nervous System/metabolism , Neurons , Neuropeptides/genetics , Neuropeptides/metabolism , Phylogeny
10.
Sci Rep ; 9(1): 2416, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30787329

ABSTRACT

Quantitative analysis of animal behaviour in model organisms is becoming an increasingly essential approach for tackling the great challenge of understanding how activity in the brain gives rise to behaviour. Here we used automated image-based tracking to extract behavioural features from an organism of great importance in understanding the evolution of chordates, the free-swimming larval form of the tunicate Ciona intestinalis, which has a compact and fully mapped nervous system composed of only 231 neurons. We analysed hundreds of videos of larvae and we extracted basic geometric and physical descriptors of larval behaviour. Importantly, we used machine learning methods to create an objective ontology of behaviours for C. intestinalis larvae. We identified eleven behavioural modes using agglomerative clustering. Using our pipeline for quantitative behavioural analysis, we demonstrate that C. intestinalis larvae exhibit sensory arousal and thigmotaxis. Notably, the anxiotropic drug modafinil modulates thigmotactic behaviour. Furthermore, we tested the robustness of the larval behavioural repertoire by comparing different rearing conditions, ages and group sizes. This study shows that C. intestinalis larval behaviour can be broken down to a set of stereotyped behaviours that are used to different extents in a context-dependent manner.


Subject(s)
Behavior, Animal/physiology , Ciona intestinalis/physiology , Neurons/physiology , Animals , Larva/physiology , Swimming/physiology
11.
Dev Biol ; 448(2): 101-110, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30579696

ABSTRACT

Non-coding regions with dozens to several hundred base pairs of extreme conservation have been found in all metazoan genomes. The distribution of these conserved non-coding elements (CNE) within and across genomes has suggested that many of them may have roles as transcriptional regulatory elements. A combination of bioinformatics and experimental approaches can be used to identify CNEs with regulatory activity in phylogenetically distant species. Nevertheless, the high divergent rate of genomic sequences of several organisms, such as tunicates, complicates the characterization of these conserved elements and very few examples really may prove their functional activity. We used a comparative approach to facilitate the identification of CNEs among distantly related or highly divergent species and experimentally demonstrated the functional significance of these novel CNEs. We first experimentally tested, in C. robusta and D. rerio transgenic embryos, the regulatory activity of conserved elements associated to genes involved in developmental control among different chordates (Homo sapiens and Danio rerio for vertebrates, Ciona robusta and Ciona savignyi for tunicates and Branchiostoma floridae for cephalochordates). Once demonstrated the cross-species functional conservation of these CNEs, the same gene loci were used as references to locate homologous regions and possible CNEs in available tunicate genomes. Comparison of tunicate-specific and chordate-specific CNEs revealed absence of conservation of the regulatory elements in spite of conservation of regulatory patterns, likely due to evolutionary specification of the respective developmental networks. This result highlights the importance of an integrative in-silico/in-vivo approach to CNEs investigation, encompassing both bioinformatics, essential for putative CNEs identification, and laboratory experiments, pivotal for the understanding of CNEs functionality.


Subject(s)
Chordata/genetics , Conserved Sequence/genetics , DNA, Intergenic/genetics , Urochordata/genetics , Animals , Animals, Genetically Modified , Base Sequence , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Species Specificity
12.
PLoS Genet ; 11(7): e1005359, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26154367

ABSTRACT

C. elegans undergoes periods of behavioral quiescence during larval molts (termed lethargus) and as adults. Little is known about the circuit mechanisms that establish these quiescent states. Lethargus and adult locomotion quiescence is dramatically reduced in mutants lacking the neuropeptide receptor NPR-1. Here, we show that the aroused locomotion of npr-1 mutants results from the exaggerated activity in multiple classes of sensory neurons, including nociceptive (ASH), touch sensitive (ALM and PLM), and stretch sensing (DVA) neurons. These sensory neurons accelerate locomotion via both neuropeptide and glutamate release. The relative contribution of these sensory neurons to arousal differs between larval molts and adults. Our results suggest that a broad network of sensory neurons dictates transitions between aroused and quiescent behavioral states.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/physiology , Cell Movement/physiology , Glutamic Acid/metabolism , Neuropeptides/metabolism , Receptors, Neuropeptide Y/genetics , Sensory Receptor Cells/metabolism , Animals , Arousal/physiology , Behavior, Animal/physiology , Caenorhabditis elegans/metabolism , Nociceptors/metabolism , Sleep/physiology
13.
Nat Commun ; 5: 4442, 2014 Jul 16.
Article in English | MEDLINE | ID: mdl-25026983

ABSTRACT

Neural circuits are functional ensembles of neurons that are selectively interconnected by chemical or electrical synapses. Here we describe a synthetic biology approach to the study of neural circuits, whereby new electrical synapses can be introduced in novel sites in the neuronal circuitry to reprogram behaviour. We added electrical synapses composed of the vertebrate gap junction protein Cx36 between Caenorhabditis elegans chemosensory neurons with opposite intrinsic responses to salt. Connecting these neurons by an ectopic electrical synapse led to a loss of lateral asymmetry and altered chemotaxis behaviour. In a second example, introducing Cx36 into an inhibitory chemical synapse between an olfactory receptor neuron and an interneuron changed the sign of the connection from negative to positive, and abolished the animal's behavioural response to benzaldehyde. These data demonstrate a synthetic strategy to rewire behavioural circuits by engineering synaptic connectivity in C. elegans.


Subject(s)
Caenorhabditis elegans/metabolism , Connexins/metabolism , Electrical Synapses/metabolism , Animals , Animals, Genetically Modified
14.
Mol Cell Neurosci ; 59: 85-96, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24518198

ABSTRACT

Polymodal nociceptors sense and integrate information on injurious mechanical, thermal, and chemical stimuli. Chemical signals either activate nociceptors or modulate their responses to other stimuli. One chemical known to activate or modulate responses of nociceptors is acetylcholine (ACh). Across evolution nociceptors express subunits of the nicotinic acetylcholine receptor (nAChR) family, a family of ACh-gated ion channels. The roles of ACh and nAChRs in nociceptor function are, however, poorly understood. Caenorhabditis elegans polymodal nociceptors, PVD, express nAChR subunits on their sensory arbor. Here we show that mutations reducing ACh synthesis and mutations in nAChR subunits lead to defects in PVD function and morphology. A likely cause for these defects is a reduction in cytosolic calcium measured in ACh and nAChR mutants. Indeed, overexpression of a calcium pump in PVD mimics defects in PVD function and morphology found in nAChR mutants. Our results demonstrate, for the first time, a central role for nAChRs and ACh in nociceptor function and suggest that calcium permeating via nAChRs facilitates activity of several signaling pathways within this neuron.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Nociception , Receptors, Nicotinic/metabolism , Acetylcholine/metabolism , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Mutation , Nociceptors/metabolism , Receptors, Nicotinic/genetics
15.
Neuron ; 79(2): 266-80, 2013 Jul 24.
Article in English | MEDLINE | ID: mdl-23889932

ABSTRACT

Sensory neurons adopt distinct morphologies and functional modalities to mediate responses to specific stimuli. Transcription factors and their downstream effectors orchestrate this outcome but are incompletely defined. Here, we show that different classes of mechanosensory neurons in C. elegans are distinguished by the combined action of the transcription factors MEC-3, AHR-1, and ZAG-1. Low levels of MEC-3 specify the elaborate branching pattern of PVD nociceptors, whereas high MEC-3 is correlated with the simple morphology of AVM and PVM touch neurons. AHR-1 specifies AVM touch neuron fate by elevating MEC-3 while simultaneously blocking expression of nociceptive genes such as the MEC-3 target, the claudin-like membrane protein HPO-30, that promotes the complex dendritic branching pattern of PVD. ZAG-1 exercises a parallel role to prevent PVM from adopting the PVD fate. The conserved dendritic branching function of the Drosophila AHR-1 homolog, Spineless, argues for similar pathways in mammals.


Subject(s)
Dendrites/physiology , Neurogenesis/physiology , Sensory Receptor Cells/physiology , Transcription Factors/physiology , Transcription, Genetic/physiology , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Dendritic Spines/physiology
16.
Neuron ; 78(5): 869-80, 2013 Jun 05.
Article in English | MEDLINE | ID: mdl-23764289

ABSTRACT

Animals undergo periods of behavioral quiescence and arousal in response to environmental, circadian, or developmental cues. During larval molts, C. elegans undergoes a period of profound behavioral quiescence termed lethargus. Locomotion quiescence during lethargus was abolished in mutants lacking a neuropeptide receptor (NPR-1) and was reduced in mutants lacking NPR-1 ligands (FLP-18 and FLP-21). Wild-type strains are polymorphic for the npr-1 gene, and their lethargus behavior varies correspondingly. Locomotion quiescence and arousal were mediated by decreased and increased secretion of an arousal neuropeptide (PDF-1) from central neurons. PDF receptors (PDFR-1) expressed in peripheral mechanosensory neurons enhanced touch-evoked calcium transients. Thus, a central circuit stimulates arousal from lethargus by enhancing the sensitivity of peripheral mechanosensory neurons in the body. These results define a circuit mechanism controlling a developmentally programmed form of quiescence.


Subject(s)
Arousal/genetics , Behavior, Animal/physiology , Caenorhabditis elegans Proteins/metabolism , Lethargy/genetics , Locomotion/genetics , Receptors, Neuropeptide Y/metabolism , Age Factors , Animals , Animals, Genetically Modified , Behavior, Animal/drug effects , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Capsaicin/pharmacology , Central Nervous System/cytology , Larva , Locomotion/drug effects , Muscles/metabolism , Mutation/genetics , Receptors, Neuropeptide Y/genetics , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/physiology , TRPV Cation Channels , Touch/genetics , gamma-Aminobutyric Acid/metabolism
17.
Curr Biol ; 23(11): 963-7, 2013 Jun 03.
Article in English | MEDLINE | ID: mdl-23707432

ABSTRACT

Electrical synapses have been shown to be important for enabling and detecting neuronal synchrony in both vertebrates and invertebrates. Hub-and-spoke circuits, in which a central hub neuron is electrically coupled to several input neurons, are an overrepresented motif in the C. elegans nervous system and may represent a conserved functional unit. The functional relevance of this configuration has been demonstrated for circuits mediating aggregation behavior and nose touch perception. Modeling approaches have been useful for understanding structurally and dynamically more complex electrical circuits. Therefore, we formulated a simple analytical model with minimal assumptions to obtain insight into the properties of the hub-and-spoke microcircuit motif. A key prediction of the model is that an active input neuron should facilitate activity throughout the network, whereas an inactive input should suppress network activity through shunting; this prediction was supported by cell ablation and in vivo neuroimaging experiments in the C. elegans nose touch circuit. Thus, the hub-and-spoke architecture may implement an analog coincidence detector enabling distinct responses to distributed and localized patterns of sensory input.


Subject(s)
Caenorhabditis elegans/physiology , Electrical Synapses/physiology , Interneurons/physiology , Animals , Models, Neurological , Nerve Net/physiology , Touch Perception
18.
Nature ; 494(7435): 95-99, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23364694

ABSTRACT

Transmembrane channel-like (TMC) genes encode a broadly conserved family of multipass integral membrane proteins in animals. Human TMC1 and TMC2 genes are linked to human deafness and required for hair-cell mechanotransduction; however, the molecular functions of these and other TMC proteins have not been determined. Here we show that the Caenorhabditis elegans tmc-1 gene encodes a sodium sensor that functions specifically in salt taste chemosensation. tmc-1 is expressed in the ASH polymodal avoidance neurons, where it is required for salt-evoked neuronal activity and behavioural avoidance of high concentrations of NaCl. However, tmc-1 has no effect on responses to other stimuli sensed by the ASH neurons including high osmolarity and chemical repellents, indicating a specific role in salt sensation. When expressed in mammalian cell culture, C. elegans TMC-1 generates a predominantly cationic conductance activated by high extracellular sodium but not by other cations or uncharged small molecules. Thus, TMC-1 is both necessary for salt sensation in vivo and sufficient to generate a sodium-sensitive channel in vitro, identifying it as a probable ionotropic sensory receptor.


Subject(s)
Caenorhabditis elegans/physiology , Ion Channels/metabolism , Sodium Chloride/metabolism , Taste/physiology , Animals , Avoidance Learning/drug effects , CHO Cells , Caenorhabditis elegans/drug effects , Cricetinae , Electric Conductivity , Ion Channels/agonists , Ion Channels/genetics , Osmolar Concentration , Sodium Chloride/pharmacology , Taste/drug effects
19.
Neuron ; 70(2): 299-309, 2011 Apr 28.
Article in English | MEDLINE | ID: mdl-21521615

ABSTRACT

The nematode C. elegans senses head and nose touch using multiple classes of mechanoreceptor neurons that are electrically coupled through a network of gap junctions. Using in vivo neuroimaging, we have found that multidendritic nociceptors in the head respond to harsh touch throughout their receptive field but respond to gentle touch only at the tip of the nose. Whereas the harsh touch response depends solely on cell-autonomous mechanosensory channels, gentle nose touch responses require facilitation by additional nose touch mechanoreceptors, which couple electrically to the nociceptors in a hub-and-spoke gap junction network. Conversely, nociceptor activity indirectly facilitates activation of the nose touch neurons, demonstrating that information flow across the network is bidirectional. Thus, a simple gap-junction circuit acts as a coincidence detector that allows primary sensory neurons to integrate information from neighboring mechanoreceptors and generate somatosensory perception.


Subject(s)
Mechanoreceptors/physiology , Neurons/physiology , Nose/innervation , Touch Perception/physiology , Touch/physiology , Animals , Behavior, Animal , Caenorhabditis elegans , Calcium/metabolism , Hot Temperature , Laser Therapy/methods , Models, Biological , Neurons/classification
20.
Mol Cell Neurosci ; 46(1): 308-17, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20971193

ABSTRACT

PVD and FLP sensory neurons envelope the body of the C. elegans adult with a highly branched network of thin sensory processes. Both PVD and FLP neurons are mechanosensors. PVD is known to mediate the response to high threshold mechanical stimuli. Thus PVD and FLP neurons are similar in both morphology and function to mammalian nociceptors. To better understand the function of these neurons we generated strains lacking them. Behavioral analysis shows that PVD and FLP regulate movement under normal growth conditions, as animals lacking these neurons demonstrate higher dwelling behavior. In addition, PVD--whose thin branches project across the body-wall muscles--may have a role in proprioception, as ablation of PVD leads to defective posture. Moreover, movement-dependent calcium transients are seen in PVD, a response that requires MEC-10, a subunit of the mechanosensory DEG/ENaC channel that is also required for maintaining wild-type posture. Hence, PVD senses both noxious and innocuous signals to regulate C. elegans behavior, and thus combines the functions of multiple mammalian somatosensory neurons. Finally, strong mechanical stimulation leads to inhibition of egg-laying, and this response also depends on PVD and FLP neurons. Based on all these results we suggest that noxious signals perceived by PVD and FLP promote an escape behavior consisting of increased speed, reduced pauses and reversals, and inhibition of egg-laying.


Subject(s)
Caenorhabditis elegans/anatomy & histology , Sensory Receptor Cells/chemistry , Sensory Receptor Cells/physiology , Touch/physiology , Animals , Animals, Genetically Modified , Behavior, Animal/physiology , Caenorhabditis elegans/physiology , Escape Reaction/physiology , Mechanoreceptors/cytology , Mechanoreceptors/physiology , Motor Activity , Nociceptors/cytology , Nociceptors/physiology , Physical Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL