Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 270(Pt 2): 132248, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729502

ABSTRACT

The present investigation entails the first report on entrapment of Carum carvi essential oil (CCEO) into chitosan polymer matrix for protection of stored herbal raw materials against fungal inhabitation and aflatoxin B1 (AFB1) production. Physico-chemical characterization of nanoencapsulated CCEO was performed through Fourier transform infrared spectroscopy, dynamic light scattering, X-ray diffractometry, and scanning electron microscopy. The nanoencapsulated CCEO displayed improved antifungal and AFB1 suppressing potentiality along with controlled delivery over unencapsulated CCEO. The encapsulated CCEO nanoemulsion obstructed the ergosterol production and escalated the efflux of cellular ions, thereby suggesting plasma membrane as prime target of antifungal action in Aspergillus flavus cells. The impairment in methyglyoxal production and modeling based carvone interaction with Afl-R protein validated the antiaflatoxigenic mechanism of action. In addition, CCEO displayed augmentation in antioxidant potentiality after encapsulation into chitosan nanomatrix. Moreover, the in-situ study demonstrated the effective protection of Withania somnifera root samples (model herbal raw material) against fungal infestation and AFB1 contamination along with prevention of lipid peroxidation. The acceptable organoleptic qualities of W. somnifera root samples and favorable safety profile in mice (animal model) strengthen the application of nanoencapsulated CCEO emulsion as nano-fungitoxicant for preservation of herbal raw materials against fungi and AFB1 mediated biodeterioration.


Subject(s)
Aflatoxin B1 , Antifungal Agents , Aspergillus flavus , Carum , Chitosan , Emulsions , Oils, Volatile , Chitosan/chemistry , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Emulsions/chemistry , Carum/chemistry , Aspergillus flavus/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Animals , Mice , Food Contamination/prevention & control , Antioxidants/pharmacology , Antioxidants/chemistry
2.
Heliyon ; 10(9): e29954, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38694117

ABSTRACT

The present investigation entails the encapsulation of Apium graveolens essential oil into chitosan nanobiopolymer (AGEO-Ne) and assessment of its efficacy against Fusarium verticillioides contamination and fumonisins biosynthesis in stored rice (Oryza sativa L.) samples. The AGEO was encapsulated through ionic gelation process and characterized by scanning electron microscopy (SEM), Dynamic light scattering (DLS), X-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. The AGEO exhibited bi-phasic delivery pattern from chitosan matrix. The AGEO caused complete inhibition of F. verticillioides growth at 1.2 µL/mL, while fumonisin B1 (FB1) and B2 (FB2) biosynthesis at 1.2 and 1.0 µL/mL, respectively. On the other hand, nanoencapsulated AGEO (AGEO-Ne) exhibited improved efficacy, caused complete inhibition of fungal growth at 0.8 µL/mL, and FB1 and FB2 production at 0.8 and 0.6 µL/mL, respectively. AGEO-Ne caused 100 % inhibition of ergosterol synthesis at 0.8 µL/mL and exhibited greater efflux of Ca2+, Mg2+, K+ ions (18.99, 21.63, and 25.38 mg/L) as well as 260 and 280 nm absorbing materials from exposed fungal cells. The in silico interaction of granyl acetate and linalyl acetate with FUM 21 protein validated the molecular mechanism for inhibition of FB1 and FB2 biosynthesis. Further, improvement in antioxidant activity of AGEO-Ne was observed after encapsulation with IC50 values of 12.08 and 6.40 µL/mL against DPPH and ABTS radicals, respectively. During in situ investigation, AGEO caused 82.09 and 86.32 % protection of rice against F. verticillioides contamination in inoculated and uninoculated rice samples, respectively, while AGEO-Ne exhibited 100 % protection of fumigated rice samples against F. verticillioides proliferation as well as FB1 and FB2 contamination. The AGEO-Ne also caused better retardation of lipid peroxidation (41.35 and 37.52 µM/g FW malondialdehyde in inoculated and uninoculated treatment) and acceptable organoleptic properties in rice samples, which strengthen its application as plant based novel preservative in food and agricultural industries.

3.
Int J Biol Macromol ; 253(Pt 8): 127688, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37890742

ABSTRACT

Deterioration of perishable foods due to fungal contamination and lipid peroxidation are the most threatened concern to food industry. Different chemical preservatives have been used to overcome these constrains; however their repetitive use has been cautioned owing to their negative impact after consumption. Therefore, attention has been paid to essential oils (EOs) because of their natural origin and proven antifungal and antioxidant activities. Many EO-based formulations have been in use but their industrial-scale application is still limited, possibly due to its poor solubility, vulnerability towards oxidation, and aroma effect on treated foods. In this sense, active food packaging using biopolymers could be considered as promising approach. The biopolymers can enhance the stability and effectiveness of EOs through controlled release, thus minimizes the deterioration of foods caused by fungal pathogens and oxidation without compromising their sensory properties. This review gives a concise appraisal on latest advances in active food packaging, particularly developed from natural polymers (chitosan, cellulose, cyclodextrins etc.), characteristics of biopolymers, and current status of EOs. Then, different packaging and their effectiveness against fungal pathogens, lipid-oxidation, and sensory properties with recent previous works has been discussed. Finally, effort was made to highlights their safety and commercialization aspects towards market solutions.


Subject(s)
Chitosan , Edible Films , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Chitosan/pharmacology , Chitosan/chemistry , Food Preservatives/pharmacology , Food Preservatives/chemistry , Food Preservation , Food Packaging , Biopolymers/pharmacology
4.
Int J Biol Macromol ; 233: 123565, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36740131

ABSTRACT

In this study, a novel chitosan nanoemulsion coating embedded with Valeriana officinalis essential oil (Ne-VOEO) was synthesized in order to improve the postharvest quality of Citrus sinensis fruits against infesting fungi, and aflatoxin B1 (AFB1) mediated nutritional deterioration. The developed nanoemulsion was characterized through SEM, FTIR, XRD, and DLS analyses. The nanoemulsion showed controlled delivery of VOEO responsible for effective inhibition of Aspergillus flavus, A. niger, A. versicolor, Penicillium italicum, and Fusarium oxysporum growth at 6.5, 5.0, 4.0, 5.5, and 3.5 µL/mL, respectively and AFB1 production at 5.0 µL/mL. The biochemical and molecular mechanism of aflatoxigenic A. flavus inhibition, and AFB1 diminution was associated with impairment in ergosterol biosynthesis, methylglyoxal production, and stereo-spatial binding of valerianol in the cavity of Ver-1 protein. During in vivo investigation, Ne-VOEO coating potentially restrained the weight loss, and respiratory rate of C. sinensis fruits with delayed degradation of soluble solids, titrable acidity, pH, and phenolic contents along with maintenance of SOD, CAT, APX activities (p < 0.05) and sensory attributes under specific storage conditions. Based on overall findings, Ne-VOEO nanoemulsion could be recommended as green, and smart antifungal coating agent in prolonging the shelf-life of stored fruits with enhanced AFB1 mitigation.


Subject(s)
Chitosan , Citrus sinensis , Citrus , Edible Films , Oils, Volatile , Valerian , Aflatoxin B1/metabolism , Oils, Volatile/chemistry , Chitosan/chemistry , Citrus sinensis/metabolism , Valerian/metabolism , Fruit/chemistry , Citrus/metabolism , Quality Improvement , Fungi/metabolism , Aspergillus flavus , Antifungal Agents/pharmacology
5.
Food Chem ; 401: 134114, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36099820

ABSTRACT

This study reports first time investigation on efficacy of cajuput essential oil loaded chitosan nanoparticle (CjEO-CSNP) on shelf-life of white button mushroom (Agaricus bisporus) stored at 4±1 °C for 7-days. CjEO-CSNP was characterized through scanning electron microscopy, X-ray diffraction, and dynamic light scattering. The nanoparticles exhibited spherical shapes with average particle size 43.17-97.03 nm. The nanoencapsulation efficiency and loading capacity were ranged between 45.86 and 92.26% and 0.69-8.87%, respectively. The release study confirmed that CjEO-CSNP showed biphasic release patterns at different pH. Positive results were unveiled when the effect of CjEO-CSNP on shelf-life of mushroom was validated by analyzing the visual appearance and firmness. Further, CjEO-CSNP prevented weight loss and respiration rate, and improved the antioxidant activity of mushrooms. CjEO-CSNP also exhibited high safety profile (LD50= > 1200 mg/Kg body weight) without altering the sensory quality of coated mushrooms. Overall, CjEO-CSNP might be used as promising candidate to lengthen the shelf-life of button mushroom.


Subject(s)
Agaricus , Chitosan , Melaleuca , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Chitosan/chemistry , Food Preservation/methods , Antioxidants/pharmacology , Agaricus/chemistry , Life Expectancy
6.
Food Chem Toxicol ; 169: 113443, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36167259

ABSTRACT

Application of essential oils to mitigate aflatoxin B1 (AFB1) contamination in food is a current research hotspot; however, their direct incorporation may cause toxic effects, and changes in food organoleptic properties. This work aimed to synthesize novel synergistic formulation of Pinus roxburghii, Juniperus communis, and Cupressus sempervirens essential oils by mixture design assay (PJC) and encapsulation of PJC formulation into chitosan nanocomposite (Nm-PJC) with an aim to protect stored rice (Oryza sativa L., prime staple food) against fungi and AFB1 mediated loss of valuable minerals, macronutrients, and fatty acids. Nm-PJC was characterized through DLS, SEM, FTIR, and XRD analyses, along with controlled delivery from chitosan nanobiopolymer. Encapsulation of synergistic formulation into chitosan-nanomatrix improved antifungal (4.0 µL/mL), antiaflatoxigenic (3.5 µL/mL), and antioxidant activities (P < 0.05). Impairment in ergosterol and methylglyoxal biosynthesis along with in-silico-homology-modeling of major components with Ver-1 and Omt-A proteins advocated chemico-molecular interaction responsible for fungal growth inhibition and AFB1 secretion. In addition, in-situ efficacy against lipid-peroxidation, fatty acid biodeterioration, and preservation of minerals, macronutrients without affecting organoleptic attributes in rice and high mammalian safety profile (9874.23 µL/kg) suggested practical application of synergistic nanoformulation as innovative smart, and green candidate to mitigate AFB1 contamination, and shelf-life extension of stored food products.


Subject(s)
Aflatoxin B1 , Chitosan , Food Contamination , Food Storage , Fungi , Oils, Volatile , Oryza , Animals , Aflatoxin B1/chemistry , Aflatoxin B1/toxicity , Antifungal Agents/pharmacology , Antioxidants/pharmacology , Chitosan/pharmacology , Ergosterol/pharmacology , Fatty Acids/metabolism , Oils, Volatile/chemical synthesis , Oils, Volatile/chemistry , Oryza/microbiology , Oryza/toxicity , Pyruvaldehyde/pharmacology , Food Contamination/prevention & control , Food Storage/methods
7.
Pestic Biochem Physiol ; 187: 105214, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36127040

ABSTRACT

This study aimed to improve the stability of Cinnamomum tamala essential oil (CTEO) via encapsulating into chitosan nanoemulsion (CsNe) through an ionic-gelation technique and explore its food preservative efficacy against aflatoxigenic strain of Aspergillus flavus (AFLHPSi-1, isolated from stored millet), aflatoxin B1 (AFB1) contamination, and lipid peroxidation, causing qualitative deterioration of stored millets. The CTEO was characterized through gas chromatography-mass spectrometry (GC-MS) analysis that confirmed the presence of linalool as a major component occupying approximately 82.64% of the total oil. The synthesized nanoparticles were characterized through scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analysis. The encapsulation efficiency (EE) and loading capacity (LC) of CTEO-CsNe were found to be 97.71% and 3.33%, respectively. In vitro release study showed a biphasic release pattern: with an initial burst release followed by a controlled release of CTEO. During investigation of efficacy, the CTEO-CsNe caused complete inhibition of A. flavus growth, and AFB1 biosynthesis at 1.0 and 0.8 µL/mL, respectively. The CTEO-CsNe exhibited its antifungal mode of action by altering fungal plasma membrane integrity (ergosterol inhibition) and permeability (leakage of important cellular constituents), and antiaflatoxigenic mode of action by inhibiting cellular methylglyoxal biosynthesis. CTEO-CsNe showed high free radical scavenging capacity (IC50 = 5.08 and 2.56 µL/mL) against DPPH•+ and ABTS•+ radicals, respectively. In addition, CTEO-CsNe presented remarkable preservative efficacy, inhibiting AFB1 and lipid peroxidation in model food system (Setaria italica) without altering their organoleptic properties. Based on overall results, CTEO-CsNe can be recommended as a novel shelf-life enhancer of stored millet samples.


Subject(s)
Chitosan , Cinnamomum , Oils, Volatile , Aflatoxin B1/metabolism , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Cinnamomum/metabolism , Delayed-Action Preparations , Edible Grain , Ergosterol , Food Preservatives/chemistry , Food Preservatives/pharmacology , Free Radicals , Millets/metabolism , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Pyruvaldehyde
8.
Front Microbiol ; 13: 970670, 2022.
Article in English | MEDLINE | ID: mdl-36016775

ABSTRACT

The present study demonstrates first time investigation on encapsulation of Aniba rosaeodora essential oil into chitosan nanoemulsion (AREO-CsNe) with the aim of improvement of its antifungal, and aflatoxin B1 (AFB1) inhibitory performance in real food system. The GC-MS analysis of AREO revealed the presence of linalool (81.46%) as a major component. The successful encapsulation of EO into CsNe was confirmed through SEM, FTIR, and XRD analysis. The in-vitro release study showed the controlled release of AREO. AREO-CsNe caused complete inhibition of Aspergillus flavus (AFLHPSi-1) growth and AFB1 production at 0.8 and 0.6 µl/ml, respectively, which was far better than AREO (1.4 and 1.2 µl/ml, respectively). Impairment of ergosterol biosynthesis coupled with enhancement of cellular materials leakage confirmed plasma membrane as the possible antifungal target of both AREO and AREO-CsNe. Significant inhibition of methylglyoxal (AFB1 inducer) synthesis in AFLHPSi-1 cells by AREO and AREO-CsNe confirmed their novel antiaflatoxigenic mode of action. In-silico molecular docking studies revealed effective interaction of linalool with Ver-1 and Omt-A proteins, leading to inhibition of AFB1 biosynthesis. Further, AREO-CsNe showed enhanced antioxidant activity with IC50 values 3.792 and 1.706 µl/ml against DPPH• and ABTS•+ radicals, respectively. In addition, AREO-CsNe caused 100% protection of stored millets (Setaria italica seeds) from AFB1 contamination and lipid peroxidation over a period of 1 year without compromising its sensory properties and exhibited high safety profile with LD50 value 9538.742 µl/kg body weight. Based on enhanced performance of AREO-CsNe over AREO, it can be recommended as a novel substitute of synthetic preservative for preservation of stored millets.

9.
Pestic Biochem Physiol ; 184: 105066, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35715028

ABSTRACT

The present study aimed to co-encapsulate binary synergistic formulation of Pimpinella anisum and Coriandrum sativum (PC) essential oils (0.75:0.25) into chitosan nanoemulsion (Nm-PC) with effective inhibition against fungal proliferation, aflatoxin B1 (AFB1) secretion, and lipid peroxidation in stored rice. Physico-chemical characterization of Nm-PC by SEM, FTIR, and XRD confirmed successful encompassment of PC inside the chitosan nanomatrix with efficient interaction by functional groups and reduction in crystallinity. Nm-PC showed superior antifungal, antiaflatoxigenic, and antioxidant activities over unencapsulated PC. Reduction in ergosterol biosynthesis and enhanced leakage of Ca2+, K+, Mg2+ ions and 260, 280 nm absorbing materials by Nm-PC fumigation confirmed irreversible damage of plasma membrane in toxigenic Aspergillus flavus cells. Significant diminution of methylglyoxal in A. flavus cells by Nm-PC fumigation illustrated biochemical mechanism for antiaflatoxigenic activity, suggesting future exploitation for development of aflatoxin resistant rice varieties through green transgenic technology. In silico findings indicated specific stereo-spatial interaction of anethole and linalool with Nor-1 protein, validating molecular mechanism for AFB1 inhibition. In addition, in situ investigation revealed effective protection of stored rice against fungal occurrence, AFB1 biosynthesis, and lipid peroxidation without affecting organoleptic attributes. Moreover, mammalian non-toxicity of chitosan entrapped PC synergistic nanoformulation could provide exciting potential for application as eco-smart safe nano-green food preservative.


Subject(s)
Chitosan , Coriandrum , Oils, Volatile , Pimpinella , Animals , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Coriandrum/chemistry , Food Preservatives/chemistry , Mammals , Oils, Volatile/chemistry , Oils, Volatile/pharmacology
10.
Nat Prod Res ; 36(17): 4569-4574, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34672233

ABSTRACT

This study aimed to investigate the efficiency of chemically characterised Carum carvi essential oil (CcEO) against aflatoxin B1 (AFB1) producing strain of Aspergillus flavus (AF-LHP-WS-4) causing deterioration of herbal raw materials (HRM). GC-MS analysis of the EO revealed the presence of carvone (69.85%) as a dominant component. CcEO caused complete suppression of A. flavus growth and AFB1 secretion at 0.7 and 0.6 µL/mL, respectively. The investigation on antifungal mode of action showed that CcEO inhibited fungal growth via abrogating ergosterol biosynthesis and triggered efflux of vital cellular ions. The inhibition of AFB1 biosynthesis was attributed to the inhibition of cellular methylglyoxal (MG) biosynthesis. In addition, CcEO showed remarkable antioxidant activity (IC50 = 10.564 µL/mL) against DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals. Based on overall results, it can be concluded that the CcEO may be recommended as potential antifungal agent for protection of HRM from fungal infestation and AFB1 contamination.


Subject(s)
Aflatoxins , Carum , Oils, Volatile , Aflatoxin B1 , Antifungal Agents/pharmacology , Aspergillus flavus , Oils, Volatile/pharmacology
11.
Int J Biol Macromol ; 188: 751-763, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34384804

ABSTRACT

The aim of the present study was to encapsulate linalool into chitosan nanocomposite (Nm-linalool) for developing novel controlled release delivery system in order to protect stored rice against fungal infestation, aflatoxin B1 (AFB1) contamination, and lipid peroxidation. The chitosan-linalool nanocomposite showed spherical shapes, smooth surface with monomodal distribution as revealed by SEM and AFM investigation. FTIR and XRD represented peak shifting and changes in degree of crystallinity after incorporation of linalool into chitosan nanocomposite. Nanoencapsulation of linalool showed higher zeta potential and lowered polydispersity index. TGA analysis reflected the stability of Nm-linalool with reduced weight loss at varying temperatures. Biphasic pattern, with initial rapid release followed by sustained release illustrated controlled delivery of linalool from chitosan nanocomposite, a prerequisite for shelf-life enhancement of stored food products. Chitosan nanocomposite incorporating linalool displayed prominent antifungal and antiaflatoxigenic activity during in vitro as well as in situ investigation in rice with improved antioxidant potentiality. Further, Nm-linalool displayed considerable reduction of lipid peroxidation in rice without exerting any adverse impact on organoleptic attributes. In conclusion, the investigation strengthens the application of chitosan-linalool nanocomposite as an innovative controlled nano-delivery system for its practical application as novel environmentally friendly eco-smart preservative in food and agricultural industries.


Subject(s)
Acyclic Monoterpenes/pharmacology , Biocompatible Materials/chemistry , Chemical Phenomena , Chitosan/chemistry , Food Preservation , Nanocomposites/chemistry , Aflatoxin B1/pharmacology , Antifungal Agents/pharmacology , Antioxidants/pharmacology , Colloids/chemistry , Delayed-Action Preparations/pharmacology , Drug Liberation , Fungi/drug effects , Lipid Peroxidation/drug effects , Malondialdehyde/metabolism , Microbial Sensitivity Tests , Microscopy, Atomic Force , Mycelium/drug effects , Nanocomposites/ultrastructure , Oryza/microbiology , Particle Size , Spectroscopy, Fourier Transform Infrared , Static Electricity , Thermogravimetry , X-Ray Diffraction
12.
Environ Sci Pollut Res Int ; 28(48): 68690-68705, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34273074

ABSTRACT

The present study was undertaken to explore the inhibitory effect of Levisticum officinale Koch. essential oil (LoffEO) on the growth and aflatoxin B1 secretion by Aspergillus flavus (AF-LHP-SH1, aflatoxigenic strain) causing deterioration of stored chia seeds (Salvia hispanica). The chemical profile analysis of LoffEO by GC-MS analysis revealed the presence of α-terpinyl acetate (26.03 %) as a major component followed by terpineol <1- > (24.03 %) and citronellal (24.03 %). Results on antifungal and antiaflatoxigenic activity indicated that LoffEO at 2.0 and 1.75 µL/mL caused complete inhibition of growth and aflatoxin B1 production, respectively. Antifungal toxicity of LoffEO was strongly correlated with the inhibition of ergosterol content, leakage of cellular ions, and disintegration of membrane permeability. Reduction in cellular methylglyoxal by LoffEO indicated a novel antiaflatoxigenic mechanism of action. The LoffEO showed moderate free radical quenching activity in DPPH assay (IC50 = 26.10 µL/mL) and exhibited remarkable inhibitory efficacy against lipid peroxidation of chia seeds. In addition, LoffEO presented strong in situ antiaflatoxigenic efficacy, and exhibited non-phytotoxic nature, acceptable sensory characteristics, and favorable safety profile (LD50 = 19786.59 µL/kg), which recommends its practical utilization as a novel and safe preservative to improve the shelf life of stored chia seeds from fungal infestation and aflatoxin B1 contamination.


Subject(s)
Levisticum , Oils, Volatile , Antifungal Agents/pharmacology , Aspergillus flavus , Oils, Volatile/pharmacology , Salvia hispanica
13.
Environ Sci Pollut Res Int ; 28(15): 18918-18940, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33609244

ABSTRACT

The control of storage insect pests is largely based on synthetic pesticides. However, due to fast growing resistance in the targeted insects, negative impact on humans and non-target organisms as well as the environment, there is an urgent need to search some safer alternatives of these xenobiotics. Many essential oils (EOs) and their bioactive compounds have received particular attention for application as botanical pesticides, since they exhibited high insecticidal efficacy, diverse mode of action, and favourable safety profiles on mammalian system as well as to the non-target organisms. Data collected from scientific articles show that these EOs and their bioactive compounds exhibited insecticidal activity via fumigant, contact, repellent, antifeedant, ovicidal, oviposition deterrent and larvicidal activity, and by inhibiting/altering important neurotransmitters such as acetylcholine esterase (AChE) and octopamine or neurotransmitter inhibitor γ-amino butyric acid (GABA), as well as by altering the enzymatic [superoxide dismutase (SOD), catalase (CAT), peroxidases (POx), glutathione-S-transferase (GST) and glutathione reductase (GR)] and non-enzymatic [glutathione (GSH)] antioxidant defence systems. However, in spite of promising pesticidal efficacy against storage pests, the practical application of EOs and their bioactive compounds in real food systems remain rather limited because of their high volatility, poor water solubility and susceptibility towards degradation. Nanoencapsulation/nanoemulsion of EOs is currently considered as a promising tool that improved water solubility, enhanced bio-efficacy, stability and controlled release, thereby expanding their applicability.


Subject(s)
Insect Repellents , Insecticides , Oils, Volatile , Pesticides , Animals , Insecta , Oils, Volatile/pharmacology
14.
Int J Biol Macromol ; 171: 480-490, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33428956

ABSTRACT

In this study, a comparative efficacy of Cananga odorata EO (CoEO) and its nanoencapsulated formulation into chitosan nanoemulsion (CoEO-CsNe) against a toxigenic strain of Aspergillus flavus (AF-M-K5) were investigated for the first time in order to determine its efficacy in preservation of stored food from fungal, aflatoxin B1 (AFB1) contamination and lipid peroxidation. GC and GC-MS analysis of CoEO revealed the presence of linalool (24.56%) and benzyl acetate (22.43%) as the major components. CoEO was encapsulated into chitosan nanoemulsion (CsNe) through ionic-gelation technique and characterized by High Resolution-Scanning Electron Microscopy (HR-SEM), Fourier Transform Infrared spectroscopy (FTIR), and X-Ray Diffraction (XRD) analysis. The CoEO-CsNe during in vitro investigation against A. flavus completely inhibited the growth and AFB1 production at 1.0 µL/mL and 0.75 µL/mL, respectively. Additionally, CoEO-CsNe showed improved antioxidant activity against DPPH• and ABTS•+ with IC50 value 0.93 and 0.72 µL/mL, respectively. Further, CoEO-CsNe suppressed fungal growth, AFB1 secretion and lipid peroxidation in Arachis hypogea L. during in situ investigation without causing any adverse effect on seed germination. Overall results demonstrated that the CoEO-CsNe has potential of being utilized as a suitable plant based antifungal agent to improve the shelf-life of stored food against AFB1 and lipid peroxidation mediated biodeterioration.


Subject(s)
Antifungal Agents/administration & dosage , Antioxidants/administration & dosage , Arachis/microbiology , Aspergillus flavus/drug effects , Cananga/chemistry , Food Preservatives/administration & dosage , Nanocapsules/administration & dosage , Oils, Volatile/administration & dosage , Plant Oils/administration & dosage , Aflatoxin B1/metabolism , Antifungal Agents/pharmacology , Antioxidants/pharmacology , Aspergillus flavus/metabolism , Drug Evaluation, Preclinical , Emulsions , Food Preservatives/pharmacology , Gas Chromatography-Mass Spectrometry , Germination/drug effects , Green Chemistry Technology , Inhibitory Concentration 50 , Lipid Peroxidation/drug effects , Microscopy, Electron, Scanning , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Seeds/drug effects , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
15.
Carbohydr Polym ; 255: 117339, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33436182

ABSTRACT

The present investigation entails the fabrication and characterization of nanometric emulsion of eugenol (Nm-eugenol) encompassed into chitosan for assessing bio-efficacy in terms of in vitro antifungal actions, antiaflatoxigenic potential, and in situ preservative efficacy against Aspergillus flavus infestation and aflatoxin B1 (AFB1) mediated loss of dietary minerals, lipid triglycerides and alterations in composition of important macronutrients in stored rice. Nm-eugenol characterized by SEM, XRD, and FTIR exhibited biphasic burst release of eugenol. Reduction in ergosterol and methylglyoxal (AFB1-inducer) content after Nm-eugenol fumigation depicted biochemical mechanism of antifungal and antiaflatoxigenic activities. In silico 3D homology docking of eugenol with Ver-1 gene validated molecular mechanism of AFB1 inhibition. Further, significant protection of rice seeds from fungi, AFB1 contamination and preservation against loss of rice minerals, macronutrients and lipids during storage suggested deployment of chitosan as a biocompatible wall material for eugenol encapsulation and application as novel green preservative for food protection.


Subject(s)
Aflatoxin B1/antagonists & inhibitors , Anti-Infective Agents/pharmacology , Aspergillus flavus/drug effects , Chitosan/chemistry , Eugenol/pharmacology , Fungal Proteins/antagonists & inhibitors , Nanostructures/chemistry , Aflatoxin B1/chemistry , Aflatoxin B1/metabolism , Aflatoxin B1/toxicity , Anti-Infective Agents/metabolism , Aspergillus flavus/growth & development , Aspergillus flavus/metabolism , Binding Sites , Drug Compounding/methods , Drug Liberation , Edible Grain , Emulsions , Ergosterol/antagonists & inhibitors , Ergosterol/metabolism , Eugenol/metabolism , Food Preservation/methods , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Humans , Kinetics , Molecular Docking Simulation , Nanostructures/ultrastructure , Nutrients/analysis , Oryza/drug effects , Oryza/microbiology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Pyruvaldehyde/antagonists & inhibitors , Pyruvaldehyde/metabolism , Triglycerides/analysis
16.
Food Chem Toxicol ; 149: 112019, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33508419

ABSTRACT

Spoilage of food by mycotoxigenic fungi poses a serious risk to food security throughout the world. In view of the negative effects of synthetic preservatives, essential oils (EOs) and their bioactive constituents are gaining momentum as suitable substitute to ensure food safety by controlling mycotoxins. However, despite their proven preservative potential against mycotoxins, the use of EOs/bioactive constituents in real food system is still restricted due to instability caused by abiotic factors and negative impact on organoleptic attributes after direct application. Nanoencapsulation in this regard could be a promising approach to address these problems, since the process can increase the stability of EOs/bioactive constituents, barricades their loss and considerably prevent their interaction with food matrices, thus preserving their original organoleptic qualities. The aim of this review is to provide wider and up-to-date overview on recent advances in nanoencapsulation of EOs/bioactive constituents with the objective to control mycotoxin contamination in food system. Further, the information on polymer characteristics, nanoencapsulation techniques, factors affecting the nanoencapsulation, applications of nanoencapsulated formulations, and characterization along with the study on their release kinetics and impacts on organoleptic attributes of food are discussed. Finally, the safety aspects of nanoencapsulated formulations for their safe utilization are also explored.


Subject(s)
Food Contamination/prevention & control , Food Preservatives/pharmacology , Mycotoxins/chemistry , Nanoparticles/chemistry , Oils, Volatile/pharmacology , Food Preservatives/chemistry , Humans , Mycotoxins/toxicity , Oils, Volatile/chemistry
17.
J Food Sci ; 86(1): 149-160, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33314161

ABSTRACT

The present study envisages the potential application of chitosan-coated Zingiber zerumbet essential oil nanoemulsion (ZEO-CsNE) as green antimicrobial preservative against Aspergillus flavus, aflatoxin B1 (AFB1 ), and lipid peroxidation of stored functional foods. GC-MS analysis of ZEO exhibited the abundance of cis-geraniol (15.53%) as the major component. ZEO-CsNE showed biphasic release profile during in vitro release study conducted for 10 days. The ZEO-CsNE inhibited the growth of A. flavus (strain AF-LHP-SH1) and AFB1 production at 1.0 and 0.8 µL/mL, respectively. Interestingly, considerable reduction in ergosterol biosynthesis followed by enhanced leakage of vital cellular contents and methylglyoxal inhibition represents novel antifungal and antiaflatoxigenic mechanism of action, respectively. Further, ZEO-CsNE inhibited lipid peroxidation and AFB1 production in postharvest Salvia hispanica seeds during in situ trial and presented favorable safety profile (median lethal dose [LD50 ] = 29,114 µL/kg) for male mice. Based on overall observations, ZEO-CsNE could be recommended as a green antimicrobial substitute of synthetic preservatives for in vitro and in situ protection of functional food samples. PRACTICAL APPLICATION: Food industries are facing enormous amount of burden coming from fungal and aflatoxin contamination that can cause severe adverse effects to humans. Essential oils (EOs) are well known for their food preservative efficacy; however, some limitations such as oxidative instability in open system may limit their application directly into food system. The encapsulation of the EOs into polymeric matrix could provide a barrier that will protect the EOs from degradation. This research could provide a basis for utilization of EO after encapsulation into chitosan nanoemulsion for industrial-scale application for preservation of stored functional foods from fungal and aflatoxin contamination.


Subject(s)
Aflatoxin B1/chemistry , Antifungal Agents/pharmacology , Chitosan/chemistry , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Zingiberaceae/chemistry , Aflatoxin B1/toxicity , Animals , Antifungal Agents/chemistry , Chitosan/pharmacology , Emulsions , Food Preservatives/pharmacology , Fungi/drug effects , Green Chemistry Technology , Lipid Peroxidation/drug effects , Mice , Nanostructures/chemistry , Oils, Volatile/chemistry , Plant Oils/chemistry
18.
J Food Sci Technol ; 57(8): 2863-2876, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32624592

ABSTRACT

In vitro antifungal activity of the essential oil from Monarda citriodora (MCEO) with possible mode of action was evaluated against A. flavus (AF-LHP-SH1) and 15 other storage molds for controlling postharvest deterioration of stored functional food samples. The chemical profiling of MCEO as done through GC-MS analysis revealed caryophyllene (19.15%) as the major component. The MCEO showed broad spectrum fungitoxicity and completely inhibited the growth of all tested molds and aflatoxin B1 (AFB1) production by AF-LHP-SH1 at 1.40 and 1.20 µL/mL, respectively. Plasma membrane damage and methylglyoxal inhibition was confirmed as the possible antifungal and antiaflatoxigenic mode of action of MCEO. MCEO exhibited remarkable antioxidant activity with IC50 value 2.24 µL/mL as determined through DPPH assay and did not cause adverse effect on seed germination. In addition, the MCEO was encapsulated into chitosan nanoparticle, characterized (SEM, FTIR, XRD) and assessed for their potential against inhibition of growth and AFB1 production. MCEO after encapsulation exhibited enhanced efficacy inhibiting fungal growth and AFB1 production by AF-LHP-SH1 at 0.6 and 0.5 µL/mL, respectively. Encapsulated MCEO may be recommended as novel preservative to extend the shelf life of stored functional food samples.

19.
Food Chem Toxicol ; 143: 111536, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32640350

ABSTRACT

Origanum majorana essential oil (OmEO) encapsulated into chitosan nanoemulsion is being reported as a novel preservative of stored food items against fungi, aflatoxin B1 (AFB1) contamination and lipid peroxidation. The major component of OmEO identified through GC-MS was terpinen-4-ol (28.92%). HR-SEM, FTIR and XRD analyses confirmed successful encapsulation of OmEO into chitosan nanoemulsion (OmEO-CsNe). The results showed remarkable improvement in efficacy after nanoencapsulation, since OmEO-CsNe completely inhibited the growth and AFB1 production by Aspergillus flavus at 1.0 µL/mL, which was 2.5 and 1.5 µL/mL, respectively for OmEO. The inhibition of ergosterol followed by release of cellular ions and 260 and 280 nm absorbing materials demonstrated plasma membrane as possible antifungal target. Inhibition of methylglyoxal confirmed antiaflatoxigenic mode of action. OmEO-CsNe showed enhanced antioxidant activity (IC50 = 14.94 and 5.53 µL/mL for DPPH and ABTS, respectively) and caused in situ inhibition of lipid peroxidation and AFB1 production in maize (third most important staple crop after wheat and rice) without altering their sensory attributes and presented safety profile (LD50 = 11,889 µL/kg) when tested on mice. The findings indicate that the encapsulation considerably enhances the performance of OmEO, therefore can be recommended as a promising antifungal agent to extend the shelf-life of food items.


Subject(s)
Aflatoxin B1/antagonists & inhibitors , Antifungal Agents/pharmacology , Antioxidants/pharmacology , Oils, Volatile/pharmacology , Origanum/chemistry , Plant Oils/pharmacology , Animals , Antifungal Agents/chemistry , Antioxidants/chemistry , Chitosan/chemistry , Ergosterol , Food Preservatives/chemistry , Food Preservatives/pharmacology , Fungi/drug effects , Lipid Peroxidation , Male , Mice , Nanostructures , Oils, Volatile/chemistry , Oils, Volatile/toxicity , Plant Oils/chemistry , Plant Oils/toxicity , Seeds/microbiology , Toxicity Tests , Zea mays/microbiology
20.
Environ Sci Pollut Res Int ; 27(22): 27635-27650, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32394249

ABSTRACT

The study reports the preservative efficacy of Bunium persicum (Boiss) essential oil (BPEO) against fungal and aflatoxin B1 (AFB1) contamination of stored masticatories and boosting of its efficacy through encapsulation into chitosan. BPEO was chemically characterized through GC-MS analysis, which revealed γ-terpinene as the major compound. The BPEO at 1.2 µL/mL concentration completely inhibited the growth of toxigenic strain of Aspergillus flavus (AF-LHP-PE-4) along with 15 common food borne moulds and AFB1 secretion. The BPEO exerts its antifungal action on plasma membrane, as confirmed through ergosterol inhibition, alteration of membrane fluidity and enhancement of cellular ions and 260 and 280 nm absorbing material leakage. The antiaflatoxigenic mechanism of action of BPEO was confirmed through methylglyoxal reduction. Further, BPEO showed strong antioxidant activity (IC50 = 7.36 µL/mL) as measured by DPPH· assay. During in situ investigation, BPEO completely inhibited AFB1 production in model food (Phyllanthus emblica) system without altering the sensory properties and also exhibited high LD50 value (14,584.54 µL/kg) on mice. In addition, BPEO was encapsulated into chitosan, characterized and tested for their potential to inhibit growth and AFB1 production. The mean particle size, PDI and zeta potential of formed BPEO-loaded chitosan nanoparticle (CS-Np-BPEO) were performed to confirm successful encapsulation. The result revealed nanoencapsulated BPEO showed enhanced activity and completely inhibited the growth and AFB1 production by AF-LHP-PE-4 at 0.8 µL/mL. Based on findings, it could be concluded that the BPEO and its encapsulated formulation can be recommended as a potential plant-based preservative against fungal and aflatoxin contamination of stored masticatories.


Subject(s)
Aflatoxins , Apiaceae , Chitosan , Oils, Volatile , Animals , Antifungal Agents , Aspergillus flavus , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...